695 research outputs found

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature

    Temporal Dynamics and Impact of Climate Factors on the Incidence of Zoonotic Cutaneous Leishmaniasis in Central Tunisia

    Get PDF
    Old world cutaneous leishmaniasis is a vector-borne disease occurring in rural areas of developing countries. The main reservoirs are the rodents Psammomys obesus and Meriones shawi. Zoonotic Leishmania transmission cycle is maintained in the burrows of rodents where the sand fly Phlebotomus papatasi finds the ideal environment and source of blood meals. In the present study we showed seasonality of the incidence of disease during the same cycle with an inter-epidemic period ranging from 4 to 7 years. We evaluated the impact of climate variables (rainfall, humidity and temperature) on the incidence of zoonotic cutaneous leishmaniais in central Tunisia. We confirmed that the risk of disease is mainly influenced by the humidity related to the months of July to September during the same season and mean rainfall lagged by 12 to 14 months

    Design of the Pacemaker REmote Follow-up Evaluation and Review (PREFER) trial to assess the clinical value of the remote pacemaker interrogation in the management of pacemaker patients

    Get PDF
    Abstract Background Although pacemakers are primarily used for the treatment of bradycardia, diagnostic data available in current pacemakers allow them to be also used as sophisticated, continuous monitoring devices. Easy access to these stored data may assist clinicians in making diagnostic and therapeutic decisions sooner, thus avoiding potential long-term sequelae due to untreated clinical disorders. Internet-based remote device interrogation systems provide clinicians with frequent and complete access to stored data in pacemakers. In addition to monitoring device function, remote monitors may be a helpful tool in assisting physicians in the management of common arrhythmia disorders. Methods The Pacemaker REmote Follow-up Evaluation and Review (PREFER) trial is a prospective, randomized, parallel, unblinded, multicenter, open label clinical trial to determine the utility of remote pacemaker interrogation in the earlier diagnosis of clinically actionable events compared to the existing practice of transtelephonic monitoring. There have been 980 patients enrolled and randomized to receive pacemaker follow up with either remote interrogation using the Medtronic CareLink® Network (CareLink) versus the conventional method of transtelephonic monitoring (TTM) in addition to periodic in-person interrogation and programming evaluations. The purpose of this manuscript is to describe the design of the PREFER trial. The results, to be presented separately, will characterize the number of clinically actionable events as a result of pacemaker follow-up using remote interrogation instead of TTM. Trial registration ClinicalTrials.gov: NCT00294645.http://deepblue.lib.umich.edu/bitstream/2027.42/112561/1/13063_2008_Article_231.pd

    Non-Negative Matrix Factorization for Learning Alignment-Specific Models of Protein Evolution

    Get PDF
    Models of protein evolution currently come in two flavors: generalist and specialist. Generalist models (e.g. PAM, JTT, WAG) adopt a one-size-fits-all approach, where a single model is estimated from a number of different protein alignments. Specialist models (e.g. mtREV, rtREV, HIVbetween) can be estimated when a large quantity of data are available for a single organism or gene, and are intended for use on that organism or gene only. Unsurprisingly, specialist models outperform generalist models, but in most instances there simply are not enough data available to estimate them. We propose a method for estimating alignment-specific models of protein evolution in which the complexity of the model is adapted to suit the richness of the data. Our method uses non-negative matrix factorization (NNMF) to learn a set of basis matrices from a general dataset containing a large number of alignments of different proteins, thus capturing the dimensions of important variation. It then learns a set of weights that are specific to the organism or gene of interest and for which only a smaller dataset is available. Thus the alignment-specific model is obtained as a weighted sum of the basis matrices. Having been constrained to vary along only as many dimensions as the data justify, the model has far fewer parameters than would be required to estimate a specialist model. We show that our NNMF procedure produces models that outperform existing methods on all but one of 50 test alignments. The basis matrices we obtain confirm the expectation that amino acid properties tend to be conserved, and allow us to quantify, on specific alignments, how the strength of conservation varies across different properties. We also apply our new models to phylogeny inference and show that the resulting phylogenies are different from, and have improved likelihood over, those inferred under standard models

    Defense Against Cannibalism: The SdpI Family of Bacterial Immunity/Signal Transduction Proteins

    Get PDF
    The SdpI family consists of putative bacterial toxin immunity and signal transduction proteins. One member of the family in Bacillus subtilis, SdpI, provides immunity to cells from cannibalism in times of nutrient limitation. SdpI family members are transmembrane proteins with 3, 4, 5, 6, 7, 8, or 12 putative transmembrane α-helical segments (TMSs). These varied topologies appear to be genuine rather than artifacts due to sequencing or annotation errors. The basic and most frequently occurring element of the SdpI family has 6 TMSs. Homologues of all topological types were aligned to determine the homologous TMSs and loop regions, and the positive-inside rule was used to determine sidedness. The two most conserved motifs were identified between TMSs 1 and 2 and TMSs 4 and 5 of the 6 TMS proteins. These showed significant sequence similarity, leading us to suggest that the primordial precursor of these proteins was a 3 TMS–encoding genetic element that underwent intragenic duplication. Various deletional and fusional events, as well as intragenic duplications and inversions, may have yielded SdpI homologues with topologies of varying numbers and positions of TMSs. We propose a specific evolutionary pathway that could have given rise to these distantly related bacterial immunity proteins. We further show that genes encoding SdpI homologues often appear in operons with genes for homologues of SdpR, SdpI’s autorepressor. Our analyses allow us to propose structure–function relationships that may be applicable to most family members

    Verifiable Delay Functions

    Get PDF
    We study the problem of building a verifiable delay function (VDF). A VDF requires a specified number of sequential steps to evaluate, yet produces a unique output that can be efficiently and publicly verified. VDFs have many applications in decentralized systems, including public randomness beacons, leader election in consensus protocols, and proofs of replication. We formalize the requirements for VDFs and present new candidate constructions that are the first to achieve an exponential gap between evaluation and verification time
    corecore