39 research outputs found

    Degenerative changes in the appendicular joints of ancient human populations from the Japan Islands

    Get PDF
    Degenerative changes in six major limb joints were investigated to compare their prevalence among five ancient skeletal populations from the Japan Islands. The populations assessed in this study consisted of the farmers in the northern Kyushu/Yamaguchi area and the foragers from the northwestern Kyushu area from the Yayoi period (5th century BC to 3rd century AD); the Okhotsk (5th to 12th centuries AD) foragers from Hokkaido and Sakhalin; the common people from medieval Kamakura (12th to 14th centuries AD) in Kanto, central Japan; and the early-modern farmers (17th to 19th centuries AD) from Kumejima, in the southernmost island chain (Ryukyu Islands). Crude prevalence comparisons showed that the shoulder and hip joints were principally affected in early-modern Kumejima and medieval Kamakura, which contrasted with the high prevalence of elbow and knee joint changes in the Okhotsk people. The heavy dependence on marine mammals and fish for dietary protein intake probably required flexion and extension movements of the most severely degenerated joints in the Okhotsk people. The northern Kyushu/Yamaguchi and northwestern Kyushu Yayoi peoples were more affected by degeneration in the wrist joints than others, possibly due to their use of innovative tools such as stone or shell knives and harpoons. A multivariate logistic regression analysis, adjusted for age, region, and sex as the predictor variables for degenerative changes in joints, was applied to only the two samples from Kumejima and Kamakura (including previously reported spine data) because of their better preservation. This revealed differences in the prevalence of changes in some joints; for example, age-related changes were recognized. The Kumejima people were more commonly affected by hip and knee joint changes, whereas the Kamakura people were more commonly affected by changes to apophyseal joints. Because a stable isotope analysis indicated that the trophic levels of the two populations were almost the same, the pattern of degenerative changes would have reflected differences in their specific workloads, such as wet rice cultivation using a peculiar hoe by the Kumejima people. This study, combining multivariate logistic regression analysis of degenerative joint changes and stable isotope analyses, uses large skeletal populations to add clarity to the actual rigors of ancient life. © 2015 Elsevier Ltd and INQUA

    Polymorphisms of PTPN11 coding SHP-2 as biomarkers for ulcerative colitis susceptibility in the Japanese population.

    Get PDF
    OBJECTIVE: To identify genetic determinants of inflammatory bowel disease (IBD), we examined an association between polymorphisms of both the programmed cell death 1 gene (PDCD1) and the src homology 2 domain-containing tyrosine phosphatase 2 gene (PTPN11) and susceptibility to IBD. METHODS: Study subjects comprised 114 patients with ulcerative colitis (UC), 83 patients with Crohn\u27s disease, and 200 healthy control subjects. Five single nucleotide polymorphisms (SNPs) in PDCD1 and PTPN11 were detected by polymerase chain reaction restriction fragment length polymorphism. Subsequently, haplotypes composed of the two SNPs in PTPN11 were constructed. RESULTS: The frequencies of the Hap 1 haplotype and its homozygous Hap 1/Hap 1 diplotype of PTPN11 were significantly increased in UC patients compared to control subjects (P = 0.011 and P = 0.030, respectively). While no association was found for PDCD1 for UC or CD and none for PTPN11 for CD. CONCLUSION: PTPN11 is a genetic determinant for the pathogenesis of UC, and haplotyping of PTPN11 may be useful as a genetic biomarker to identify high-risk individuals susceptible to UC

    Aerodynamic Characteristics of Low-Aspect-Ratio Wings with Various Aspect Ratios in Low Reynolds Number Flows

    No full text

    The Effects of Inclusions in Steel on MnS Precipitation in Fe-Si Alloys

    No full text

    The Growth of MnS Precipitates in Fe-Si Alloys

    No full text

    "In-situ" Observation of Phase Transformation and MnS Precipitation in Fe-Si Alloys

    No full text

    Magnetic properties of ilmenite-hematite solid-solution thin films: Direct observation of antiphase boundaries and their correlation with magnetism

    Get PDF
    To clarify the relationship between nanostructures and magnetic properties of FeTiO3-Fe2O3 solid-solution thin films, we have carried out dark-field transmission electron microscope (DF-TEM) and high-angle annular dark-field (HAADF) scanning transmission electron microscope (STEM) observations. The ordered-phase films show strong ferrimagnetic properties while the films identified as the disordered phase according to x-ray diffraction are weakly ferrimagnetic with high saturation fields, in contrast to completely disordered FeTiO3-Fe2O3 solid solution for which antiferromagnetic properties or rather small magnetizations are expected. The DF-TEM and HAADF-STEM observations revealed that the ordered-phase films typically consist of cation-ordered domains of over 200 nm and that the Fe and Fe-Ti layers stacked alternately along the c axis, which leads to strong ferrimagnetic properties, are clearly distinguishable from each other. On the other hand, the films identified as the disordered phase are found to possess short-range ordered structure with antiphase boundaries distributed in cation-disordered matrix, rather than completely random cation distribution, explaining why the films are weakly ferrimagnetic with high saturation fields. The results demonstrate the significance of atomic-level observation of the cation distribution in this system for understanding the magnetic properties
    corecore