5,279 research outputs found

    Closed-form expressions for the numerical dispersion and reflection in FEM simulations involving biaxial materials

    Get PDF
    Closed-form expressions for the numerical errors caused by finite-element discretization of problems involving materials of biaxial permittivity and permeability tensors are developed. In particular, we derive expressions for the numerical dispersion and reflection in both first-order node and edge basis function finite-element formulations in an equilateral triangular mesh. Results using these closed-form expressions are compared to practical numerical simulations. The application of these expressions to the analysis of the performance of the perfectly matched layer boundary is suggeste

    Soil microorganisms behave like macroscopic organisms: patterns in the global distribution of soil euglyphid testate amoeba

    Get PDF
    Aim: Patterns of α- and β-diversity of soil protist communities and the factors that shape them remain largely unknown. We undertook a world-wide survey of forest litter to investigate the patterns of diversity in a group of testate amoebae. We aimed to assess: (1) whether there is a latitudinal gradient in α-diversity, and (2) whether β-diversity was correlated solely with environmental factors commonly used in soil biology research or if it was also independently explained by geographical barriers. Location: World-wide. Methods: We studied the diversity of Euglyphida, a common group of testate amoebae, in 35 samples of forest litter and moss samples from a global survey, using small subunit rRNA gene sequences. We assessed the relationship between sample α-diversity and latitude using generalized additive models (GAM). Furthermore, we determined the relationships between community composition and geographical models (distance-based Moran's Eigenvector Maps – db-MEM) using Generalized UniFrac distances (GUniFrac). We also investigated the relationship between individual measured soil parameters, WorldClim data and diversity (alpha plus beta) using both raw data and synthetic variables obtained through principal components analysis. Results: We recorded 245 phylotypes belonging to 6 out of 7 known Euglyphida families, plus four novel deep clades. Euglyphid α-diversity was positively correlated with temperature and negatively with latitude and litter C/N ratio. Euglyphida community structure was correlated with the spatial eigenvector Db-MEM31, independently of all measured environmental variables. Db-MEM31 corresponds to a natural barrier constituted by the Northern Hemisphere desert belt. Beta diversity was correlated with other environmental variables, such as pH, isothermality and temperature in the coldest month of the year. Main conclusions: Soil euglyphid α-diversity displays a latitudinal gradient, and β-diversity is not only correlated with climatic and physicochemical parameters but also with geographical barriers. Such patterns of diversity were until recently believed to be characteristic only for macroscopic organisms

    A real-time Global Warming Index

    Get PDF
    We propose a simple real-time index of global human-induced warming and assess its robustness to uncertainties in climate forcing and short-term climate fluctuations. This index provides improved scientific context for temperature stabilisation targets and has the potential to decrease the volatility of climate policy. We quantify uncertainties arising from temperature observations, climate radiative forcings, internal variability and the model response. Our index and the associated rate of human-induced warming is compatible with a range of other more sophisticated methods to estimate the human contribution to observed global temperature change

    The nitroxide radical TEMPOL prevents obesity, hyperlipidaemia, elevation of inflammatory cytokines, and modulates atherosclerotic plaque composition in apoE<sup>-/-</sup> mice

    Full text link
    © 2015 Elsevier Ireland Ltd. The nitroxide compound TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl radical) has been shown to prevent obesity-induced changes in adipokines in cell and animal systems. In this study we investigated whether supplementation with TEMPOL inhibits inflammation and atherosclerosis in apoE-/- mice fed a high fat diet (HFD). Methods: ApoE-/- mice were fed for 12 weeks on standard chow diet or a high-fat diet. Half the mice were supplemented with 10mg/g TEMPOL in their food. Plasma samples were analysed for triglycerides, cholesterol, low- and high-density lipoprotein cholesterol, inflammatory cytokines and markers (interleukin-6, IL-6; monocyte-chemotactic protein, MCP-1; myeloperoxidase, MPO; serum amyloid A, SAA; adiponectin; leptin). Plaques in the aortic sinus were analysed for area, and content of collagen, lipid, macrophages and smooth muscle cells. Results: High fat feeding resulted in marked increases in body mass and plasma lipid levels. Dietary TEMPOL decreased both parameters. In the high-fat-fed mice significant elevations in plasma lipid levels and the inflammatory markers IL-6, MCP-1, MPO, SAA were detected, along with an increase in leptin and a decrease in adiponectin. TEMPOL supplementation reversed these effects. When compared to HFD-fed mice, TEMPOL supplementation increased plaque collagen content, decreased lipid content and increased macrophage numbers. Conclusions: These data indicate that in a well-established model of obesity-associated hyperlipidaemia and atherosclerosis, TEMPOL had a significant impact on body mass, atherosclerosis, hyperlipidaemia and inflammation. TEMPOL may therefore be of value in suppressing obesity, metabolic disorders and increasing atherosclerotic plaque stability

    Methane storms as a driver of Titan's dune orientation

    Full text link
    Titan's equatorial regions are covered by eastward propagating linear dunes. This direction is opposite to mean surface winds simulated by Global Climate Models (GCMs), which are oriented westward at these latitudes, similar to trade winds on Earth. Different hypotheses have been proposed to address this apparent contradiction, involving Saturn's gravitational tides, large scale topography or wind statistics, but none of them can explain a global eastward dune propagation in the equatorial band. Here we analyse the impact of equinoctial tropical methane storms developing in the superrotating atmosphere (i.e. the eastward winds at high altitude) on Titan's dune orientation. Using mesoscale simulations of convective methane clouds with a GCM wind profile featuring superrotation, we show that Titan's storms should produce fast eastward gust fronts above the surface. Such gusts dominate the aeolian transport, allowing dunes to extend eastward. This analysis therefore suggests a coupling between superrotation, tropical methane storms and dune formation on Titan. Furthermore, together with GCM predictions and analogies to some terrestrial dune fields, this work provides a general framework explaining several major features of Titan's dunes: linear shape, eastward propagation and poleward divergence, and implies an equatorial origin of Titan's dune sand.Comment: Published online on Nature Geoscience on 13 April 201

    Emergence of heat extremes attributable to anthropogenic influences

    Get PDF
    Climate scientists have demonstrated that a substantial fraction of the probability of numerous recent extreme events may be attributed to human-induced climate change. However, it is likely that for temperature extremes occurring over previous decades a fraction of their probability was attributable to anthropogenic influences. We identify the first record-breaking warm summers and years for which a discernible contribution can be attributed to human influence. We find a significant human contribution to the probability of record-breaking global temperature events as early as the 1930s. Since then, all the last 16 record-breaking hot years globally had an anthropogenic contribution to their probability of occurrence. Aerosol-induced cooling delays the timing of a significant human contribution to record-breaking events in some regions. Without human-induced climate change recent hot summers and years would be very unlikely to have occurred.111411Ysciescopu

    The IBMAP approach for Markov networks structure learning

    Get PDF
    In this work we consider the problem of learning the structure of Markov networks from data. We present an approach for tackling this problem called IBMAP, together with an efficient instantiation of the approach: the IBMAP-HC algorithm, designed for avoiding important limitations of existing independence-based algorithms. These algorithms proceed by performing statistical independence tests on data, trusting completely the outcome of each test. In practice tests may be incorrect, resulting in potential cascading errors and the consequent reduction in the quality of the structures learned. IBMAP contemplates this uncertainty in the outcome of the tests through a probabilistic maximum-a-posteriori approach. The approach is instantiated in the IBMAP-HC algorithm, a structure selection strategy that performs a polynomial heuristic local search in the space of possible structures. We present an extensive empirical evaluation on synthetic and real data, showing that our algorithm outperforms significantly the current independence-based algorithms, in terms of data efficiency and quality of learned structures, with equivalent computational complexities. We also show the performance of IBMAP-HC in a real-world application of knowledge discovery: EDAs, which are evolutionary algorithms that use structure learning on each generation for modeling the distribution of populations. The experiments show that when IBMAP-HC is used to learn the structure, EDAs improve the convergence to the optimum
    corecore