48 research outputs found

    Black Stork Down: Military Discourses in Bird Conservation in Malta

    Get PDF
    Tensions between Maltese hunters and bird conservation NGOs have intensified over the past decade. Conservation NGOs have become frustrated with the Maltese State for conceding to the hunter lobby and negotiating derogations from the European Union’s Bird Directive. Some NGOs have recently started to organize complex field-operations where volunteers are trained to patrol the landscape, operate drones and other surveillance technologies, detect illegalities, and lead police teams to arrest poachers. We describe the sophisticated military metaphors which conservation NGOs have developed to describe, guide and legitimize their efforts to the Maltese public and their fee-paying members. We also discuss why such groups might be inclined to adopt these metaphors. Finally, we suggest that anthropological studies of discourse could help understand delicate contexts such as this where conservation NGOs, hunting associations and the State have ended in political deadlock

    Transboundary Cooperation Improves Endangered Species Monitoring and Conservation Actions: A Case Study of the Global Population of Amur Leopards

    Get PDF
    Political borders and natural boundaries of wildlife populations seldom coincide, often to the detriment of conservation objectives. Transnational monitoring of endangered carnivores is rare, but is necessary for accurate population monitoring and coordinated conservation policies. We investigate the benefits of collaboratively monitoring the abundance and survival of the critically endangered Amur leopard, which occurs as a single transboundary population across China and Russia. Country‐specific results overestimated abundance and were generally less precise compared to integrated monitoring estimates; the global population was similar in both years: 84 (70–108, 95% confidence interval). Uncertainty in country‐specific annual survival estimates were approximately twice the integrated estimates of 0.82 (0.69–0.91, 95% confidence limits). This collaborative effort provided a better understanding of Amur leopard population dynamics, represented a first step in building trust, and lead to cooperative agreements to coordinate conservation policies

    Phylogeography and Genetic Ancestry of Tigers (Panthera tigris)

    Get PDF
    Eight traditional subspecies of tiger (Panthera tigris), of which three recently became extinct, are commonly recognized on the basis of geographic isolation and morphological characteristics. To investigate the species' evolutionary history and to establish objective methods for subspecies recognition, voucher specimens of blood, skin, hair, and/or skin biopsies from 134 tigers with verified geographic origins or heritage across the whole distribution range were examined for three molecular markers: (1) 4.0 kb of mitochondrial DNA (mtDNA) sequence; (2) allele variation in the nuclear major histocompatibility complex class II DRB gene; and (3) composite nuclear microsatellite genotypes based on 30 loci. Relatively low genetic variation with mtDNA, DRB, and microsatellite loci was found, but significant population subdivision was nonetheless apparent among five living subspecies. In addition, a distinct partition of the Indochinese subspecies P. t. corbetti into northern Indochinese and Malayan Peninsula populations was discovered. Population genetic structure would suggest recognition of six taxonomic units or subspecies: (1) Amur tiger P. t. altaica; (2) northern Indochinese tiger P. t. corbetti; (3) South China tiger P. t. amoyensis; (4) Malayan tiger P. t. jacksoni, named for the tiger conservationist Peter Jackson; (5) Sumatran tiger P. t. sumatrae; and (6) Bengal tiger P. t. tigris. The proposed South China tiger lineage is tentative due to limited sampling. The age of the most recent common ancestor for tiger mtDNA was estimated to be 72,000–108,000 y, relatively younger than some other Panthera species. A combination of population expansions, reduced gene flow, and genetic drift following the last genetic diminution, and the recent anthropogenic range contraction, have led to the distinct genetic partitions. These results provide an explicit basis for subspecies recognition and will lead to the improved management and conservation of these recently isolated but distinct geographic populations of tigers

    Vacationers Happier, but Most not Happier After a Holiday

    Get PDF
    The aim of this study was to obtain a greater insight into the association between vacations and happiness. We examined whether vacationers differ in happiness, compared to those not going on holiday, and if a holiday trip boosts post-trip happiness. These questions were addressed in a pre-test/post-test design study among 1,530 Dutch individuals. 974 vacationers answered questions about their happiness before and after a holiday trip. Vacationers reported a higher degree of pre-trip happiness, compared to non-vacationers, possibly because they are anticipating their holiday. Only a very relaxed holiday trip boosts vacationers’ happiness further after return. Generally, there is no difference between vacationers’ and non-vacationers’ post-trip happiness. The findings are explained in the light of set-point theory, need theory and comparison theory

    Biological Earth observation with animal sensors.

    Get PDF
    Space-based tracking technology using low-cost miniature tags is now delivering data on fine-scale animal movement at near-global scale. Linked with remotely sensed environmental data, this offers a biological lens on habitat integrity and connectivity for conservation and human health; a global network of animal sentinels of environmen-tal change

    Proceedings in Phylogeography and Genetic Ancestry of Tigers (Panthera tigris) in China and Across Their Range

    No full text
    Of eight traditionally classified subspecies of the tiger Panthera tigris three have recently gone extinct and poaching, habitat loss and fragmentation continue to threaten its survival. China historically harbors four of the existing subspecies and thus has high conservation priority, yet their status, both in the wild and captivity, remains highly uncertain. A recent molecular survey (Luo et al, 2004) of 134 voucher specimens (taken from tigers of verified wild ancestry and geographic origin), from across the full range including China, examined three different types of molecular markers; four kilobase-pairs of mitochondrial DNA, 30 nuclear microsatellite loci and the nuclear major histocompatibility complex class II DRB gene; to elucidate the genetic structure of tiger populations. The data revealed relatively low genetic variation but nonetheless significant population subdivisions, suggesting six rather than five living subspecies: (1) Amur tiger P. t. altaica, (2) South China tiger P. t. amoyensis, (3) a refined Indochinese tiger P. t. corbetti, (4) a new subspecies Malayan tiger P. t. jacksoni, named after the tiger conservationist Peter Jackson, (5) Sumatran tiger P. t. sumatrae, and (6) Bengal tiger P. t. tigris. Reduced gene flow and genetic drift in isolated populations since the last genetic diminution about 72,000-108,000 years ago, as well as the recent anthropogenic range contraction, is likely to have caused these partitions. In particular, the proposed South China tiger lineage is tentative due to limited sampling. It is apparent that current captive South China tigers inherit at least two genetic lineages: one that is unique and distinct from the other subspecies and a second indistinguishable from the northern Indochinese tigers. An explicit genetic assessment of the captive tigers in China is urgently needed to validate the uniqueness or non-uniqueness of the South China tiger, or indeed the survival of P. t. amoyensis
    corecore