158 research outputs found

    Unexpected population distribution in a microbial mat community: Sulfate-reducing bacteria localized to the highly oxic chemocline in contrast to a eukaryotic preference for anoxia

    Get PDF
    The distribution and abundance of sulfate-reducing bacteria (SRB) and eukaryotes within the upper 4 mm of a hypersaline cyanobacterial mat community were characterized at high resolution with group-specific hybridization probes to quantify 16S rRNA extracted from 100-mu m depth intervals. This revealed a preferential localization of SRB within the region defined by the oxygen chemocline. Among the different groups of SRB quantified, including members of the provisional families "Desulfovibrionaceae" and "Desulfobacteriaceae," Desulfonema-like populations dominated and accounted for up to 30% of total rRNA extracted from certain depth intervals of the chemocline. These data suggest that recognized genera of SRB are not necessarily restricted by high levels of oxygen in this mat community and the possibility of significant sulfur cycling within the chemocline. In marked contrast, eukaryotic populations in this community demonstrated a preference for regions of anoxia

    Deferred pre-emptive switch from calcineurin inhibitor to sirolimus leads to improvement in GFR and expansion of T regulatory cell population: a randomized, controlled trial

    Get PDF
    BACKGROUND: Measures to prevent chronic calcineurin inhibitor (CNI) toxicity have included limiting exposure by switching to sirolimus (SIR). SIR may favorably influence T regulator cell (T(reg)) population. This randomized controlled trial compares the effect of switching from CNI to SIR on glomerular filtration rate (GFR) and T(reg) frequency. METHODS: In this prospective open label randomized trial, primary living donor kidney transplant recipients on CNI-based immunosuppression were randomized to continue CNI or switched to sirolimus 2 months after surgery; 29 were randomized to receive CNI and 31 to SIR. All patients received mycophenolate mofetil and steroids. The main outcome parameter was estimated GFR (eGFR) at 180 days. T(reg) population was estimated by flowcytometry. RESULTS: Baseline characteristics in the two groups were similar. Forty-eight patients completed the trial. At six months, patients in the SIR group had significantly higher eGFR as compared to those in the CNI group (88.94 ± 11.78 vs 80.59 ± 16.51 mL/min, p = 0.038). Patients on SIR had a 12 mL/min gain of eGFR of at the end of six months. Patients in the SIR group showed significant increase in T(reg) population at 30 days, which persisted till day 180. There was no difference in the adverse events in terms of number of acute rejection episodes, death, infections, proteinuria, lipid profile, blood pressure control and hematological parameters between the two groups. Four patients taking SIR developed enthesitis. No patient left the study or switched treatment because of adverse event. CONCLUSIONS: A deferred pre-emptive switch over from CNI to SIR safely improves renal function and T(reg) population at 6 months in living donor kidney transplant recipients. Registered in Clinical Trials Registry of India (CTRI/2011/091/000034)

    Use of the cortical epinephrine pressor response in rabbits as a diagnostic test for schizophrenia

    Full text link
    1. A careful replication of the Minz and Walaszek test failed to demonstrate its reliability as a clinical tool for diagnosing schizophrenia.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46389/1/213_2004_Article_BF00405247.pd

    A Primer on Regression Methods for Decoding cis-Regulatory Logic

    Get PDF
    The rapidly emerging field of systems biology is helping us to understand the molecular determinants of phenotype on a genomic scale [1]. Cis-regulatory elements are major sequence-based determinants of biological processes in cells and tissues [2]. For instance, during transcriptional regulation, transcription factors (TFs) bind to very specific regions on the promoter DNA [2,3] and recruit the basal transcriptional machinery, which ultimately initiates mRNA transcription (Figure 1A). Learning cis-Regulatory Elements from Omics Data A vast amount of work over the past decade has shown that omics data can be used to learn cis-regulatory logic on a genome-wide scale [4-6]--in particular, by integrating sequence data with mRNA expression profiles. The most popular approach has been to identify over-represented motifs in promoters of genes that are coexpressed [4,7,8]. Though widely used, such an approach can be limiting for a variety of reasons. First, the combinatorial nature of gene regulation is difficult to explicitly model in this framework. Moreover, in many applications of this approach, expression data from multiple conditions are necessary to obtain reliable predictions. This can potentially limit the use of this method to only large data sets [9]. Although these methods can be adapted to analyze mRNA expression data from a pair of biological conditions, such comparisons are often confounded by the fact that primary and secondary response genes are clustered together--whereas only the primary response genes are expected to contain the functional motifs [10]. A set of approaches based on regression has been developed to overcome the above limitations [11-32]. These approaches have their foundations in certain biophysical aspects of gene regulation [26,33-35]. That is, the models are motivated by the expected transcriptional response of genes due to the binding of TFs to their promoters. While such methods have gathered popularity in the computational domain, they remain largely obscure to the broader biology community. The purpose of this tutorial is to bridge this gap. We will focus on transcriptional regulation to introduce the concepts. However, these techniques may be applied to other regulatory processes. We will consider only eukaryotes in this tutorial

    Diagnostic pathways and direct medical costs incurred by new adult pulmonary tuberculosis patients prior to anti-tuberculosis treatment - Tamil Nadu, India.

    Get PDF
    BACKGROUND: Tuberculosis (TB) patients face substantial delays prior to treatment initiation, and out of pocket (OOP) expenditures often surpass the economic productivity of the household. We evaluated the pre-diagnostic cost and health seeking behaviour of new adult pulmonary TB patients registered at Primary Health Centres (PHCs) in Vellore district, Tamil Nadu, India. METHODS: This descriptive study, part of a randomised controlled trial conducted in three rural Tuberculosis Units from Dec 2012 to Dec 2015, collected data on number of health facilities, dates of visits prior to the initiation of anti-tuberculosis treatment, and direct OOP medical costs associated with TB diagnosis. Logistic regression analysis examined the factors associated with delays in treatment initiation and OOP expenditures. RESULTS: Of 880 TB patients interviewed, 34.7% presented to public health facilities and 65% patients sought private health facilities as their first point of care. The average monthly individual income was 77.79(SD57.14).About6977.79 (SD 57.14). About 69% incurred some pre-treatment costs at an average of 39.74. Overall, patients experienced a median of 6 days (3-11 IQR) of time to treatment initiation and 21 days (10-30 IQR) of health systems delay. Age ≤ 40 years (aOR: 1.73; CI: 1.22-2.44), diabetes (aOR: 1.63; CI: 1.08-2.44) and first visit to a private health facility (aOR: 17.2; CI: 11.1-26.4) were associated with higher direct OOP medical costs, while age ≤ 40 years (aOR: 0.64; CI: 0.48-0.85) and first visit to private health facility (aOR: 1.79, CI: 1.34-2.39) were associated with health systems delay. CONCLUSION: The majority of rural TB patients registering at PHCs visited private health facilities first and incurred substantial direct OOP medical costs and delays prior to diagnosis and anti-tuberculosis treatment initiation. This study highlights the need for PHCs to be made as the preferred choice for first point of contact, to combat TB more efficiently.Eunice Kennedy Shriver National Institute of Child Health and Human Developmen

    Anti-Apoptotic Machinery Protects the Necrotrophic Fungus Botrytis cinerea from Host-Induced Apoptotic-Like Cell Death during Plant Infection

    Get PDF
    Necrotrophic fungi are unable to occupy living plant cells. How such pathogens survive first contact with living host tissue and initiate infection is therefore unclear. Here, we show that the necrotrophic grey mold fungus Botrytis cinerea undergoes massive apoptotic-like programmed cell death (PCD) following germination on the host plant. Manipulation of an anti-apoptotic gene BcBIR1 modified fungal response to PCD-inducing conditions. As a consequence, strains with reduced sensitivity to PCD were hyper virulent, while strains in which PCD was over-stimulated showed reduced pathogenicity. Similarly, reduced levels of PCD in the fungus were recorded following infection of Arabidopsis mutants that show enhanced susceptibility to B. cinerea. When considered together, these results suggest that Botrytis PCD machinery is targeted by plant defense molecules, and that the fungal anti-apoptotic machinery is essential for overcoming this host-induced PCD and hence, for establishment of infection. As such, fungal PCD machinery represents a novel target for fungicides and antifungal drugs

    Metagenomic and Metabolic Profiling of Nonlithifying and Lithifying Stromatolitic Mats of Highborne Cay, The Bahamas

    Get PDF
    BACKGROUND: Stromatolites are laminated carbonate build-ups formed by the metabolic activity of microbial mats and represent one of the oldest known ecosystems on Earth. In this study, we examined a living stromatolite located within the Exuma Sound, The Bahamas and profiled the metagenome and metabolic potential underlying these complex microbial communities. METHODOLOGY/PRINCIPAL FINDINGS: The metagenomes of the two dominant stromatolitic mat types, a nonlithifying (Type 1) and lithifying (Type 3) microbial mat, were partially sequenced and compared. This deep-sequencing approach was complemented by profiling the substrate utilization patterns of the mats using metabolic microarrays. Taxonomic assessment of the protein-encoding genes confirmed previous SSU rRNA analyses that bacteria dominate the metagenome of both mat types. Eukaryotes comprised less than 13% of the metagenomes and were rich in sequences associated with nematodes and heterotrophic protists. Comparative genomic analyses of the functional genes revealed extensive similarities in most of the subsystems between the nonlithifying and lithifying mat types. The one exception was an increase in the relative abundance of certain genes associated with carbohydrate metabolism in the lithifying Type 3 mats. Specifically, genes associated with the degradation of carbohydrates commonly found in exopolymeric substances, such as hexoses, deoxy- and acidic sugars were found. The genetic differences in carbohydrate metabolisms between the two mat types were confirmed using metabolic microarrays. Lithifying mats had a significant increase in diversity and utilization of carbon, nitrogen, phosphorus and sulfur substrates. CONCLUSION/SIGNIFICANCE: The two stromatolitic mat types retained similar microbial communities, functional diversity and many genetic components within their metagenomes. However, there were major differences detected in the activity and genetic pathways of organic carbon utilization. These differences provide a strong link between the metagenome and the physiology of the mats, as well as new insights into the biological processes associated with carbonate precipitation in modern marine stromatolites

    Association between age at disease onset of anti-neutrophil cytoplasmic antibody-associated vasculitis and clinical presentation and short-term outcomes

    Get PDF
    Objectives: ANCA-associated vasculitis (AAV) can affect all age groups. We aimed to show that differences in disease presentation and 6 month outcome between younger- A nd older-onset patients are still incompletely understood. Methods: We included patients enrolled in the Diagnostic and Classification Criteria for Primary Systemic Vasculitis (DCVAS) study between October 2010 and January 2017 with a diagnosis of AAV. We divided the population according to age at diagnosis: <65 years or ≥65 years. We adjusted associations for the type of AAV and the type of ANCA (anti-MPO, anti-PR3 or negative). Results: A total of 1338 patients with AAV were included: 66% had disease onset at <65 years of age [female 50%; mean age 48.4 years (s.d. 12.6)] and 34% had disease onset at ≥65 years [female 54%; mean age 73.6 years (s.d. 6)]. ANCA (MPO) positivity was more frequent in the older group (48% vs 27%; P = 0.001). Younger patients had higher rates of musculoskeletal, cutaneous and ENT manifestations compared with older patients. Systemic, neurologic,cardiovascular involvement and worsening renal function were more frequent in the older-onset group. Damage accrual, measured with the Vasculitis Damage Index (VDI), was significantly higher in older patients, 12% of whom had a 6 month VDI ≥5, compared with 7% of younger patients (P = 0.01). Older age was an independent risk factor for early death within 6 months from diagnosis [hazard ratio 2.06 (95% CI 1.07, 3.97); P = 0.03]. Conclusion: Within 6 months of diagnosis of AAV, patients >65 years of age display a different pattern of organ involvement and an increased risk of significant damage and mortality compared with younger patients

    Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62

    Get PDF
    The wild relatives and progenitors of wheat have been widely used as sources of disease resistance (R) genes. Molecular identification and characterization of these R genes facilitates their manipulation and tracking in breeding programmes. Here, we develop a reference-quality genome assembly of the wild diploid wheat relative Aegilops sharonensis and use positional mapping, mutagenesis, RNA-Seq and transgenesis to identify the stem rust resistance gene Sr62, which has also been transferred to common wheat. This gene encodes a tandem kinase, homologues of which exist across multiple taxa in the plant kingdom. Stable Sr62 transgenic wheat lines show high levels of resistance against diverse isolates of the stem rust pathogen, highlighting the utility of Sr62 for deployment as part of a polygenic stack to maximize the durability of stem rust resistance
    corecore