36 research outputs found

    Non-Flammable R-410A Alternative for Commercial Refrigeration and Air Conditioning

    Get PDF
    It is well known that R-410A is the predominant refrigerant used globally in air conditioning systems. However, there has recently been growing interest in 410A use in commercial refrigeration applications in Japan. Along with the Kigali amendment to the Montreal Protocol to phase down use of HFCs, Japan has enacted HFC regulations with specific GWP limits. For commercial condensing units and larger refrigeration systems, a GWP limit of \u3c 1500 GWP will be implemented starting in 2025. To address the need for a lower GWP R-410A alternative, a nonflammable hydrofluoroolefin (HFO) refrigerant mixture with named XP41 (R-463A pending) has been developed. XP41 is a five-component mixture of HFO-1234yf using HFC-32, 125, and 134a and a small amount of CO2. HFO-1234yf is included in the formulation to reduce the GWP. HFC-32 and CO2 have been added to increase the cooling capacity and provide comparable performance to R-410A. For large building air conditioning where variable refrigerant flow (VRF) use is growing, there is also a significant challenge to safely use flammable refrigerants due to large charge sizes. XP41 could potentially address this need as well This paper will provide detailed information on the properties and other key characteristics of XP41, including drop-in testing in an air conditioning system

    A Shared Space: The Collaborative Alliance Between the College of Charleston Special Collections and the South Carolina Historical Society Archives

    Get PDF
    In December 2014, the South Carolina Historical Society relocated nearly 5,000 linear feet of manuscript material and more than 3,000 rare books and monographs to a shared space within the Special Collections department at the College of Charleston’s Addlestone Library. Exploration of the antecedents and evolution of this partnership between a private non-profit manuscript archive and a public academic repository can demonstrate lessons learned from the process of condensing archival spaces and personnel to create a deeply rich repository for research and inquiry. In the absence of a formula or analytical framework for the envisioned collaboration, stakeholders at each institution relied on standards, best practices, and case studies in the fields of archives and libraries, while breaking new ground in the realms of management and long-term stewardship of and access to archival materials. In this article, contributors from both partner organizations discuss the deployment of project management strategies, creation of workflows to prepare facilities and relocate collections, communication, coordination of publicity, and solutions to challenges encountered during the initial twenty-four months of the partnership. Contributors also offer takeaways that may prove helpful to other archivists and allied professions facing analogous change scenarios

    A Complete Spectroscopic Survey of the Milky Way Satellite Segue 1: The Darkest Galaxy

    Get PDF
    Spectroscopic study of the Segue 1 dwarf galaxy. --author-supplied descriptio

    Books Reviews

    Get PDF
    Peer reviews of: Becoming a Trusted Digital Repository, by Steve Marks Digital Preservation Essentials, by Erin O\u27Meara and Kate Stratton, edited by Christopher J. Prom Teaching with Primary Sources, edited by Christopher J. Prom and Lisa Janicke Hinchliffe Donors and Archives: A Guidebook for Successful Programs, by Aaron D. Purcell Archives in Libraries: What Librarians and Archivists Need to Know to Work Together, by Jeanette A. Bastian, Megan Sniffin-Marinoff, and Donna Webber Adjusted Margin: Xerography, Art, and Activism in the Late Twentieth Century, by Kate Eichhorn Conceptualizing 21st-Century Archives, by Anne J. Gilliland Perspectives on Women\u27s Archives, edited by Tanya Zanish-Belcher with Anke Vos

    A Complete Spectroscopic Survey of the Milky Way satellite Segue 1: Dark matter content, stellar membership and binary properties from a Bayesian analysis

    Full text link
    We introduce a comprehensive analysis of multi-epoch stellar line-of-sight velocities to determine the intrinsic velocity dispersion of the ultrafaint satellites of the Milky Way. Our method includes a simultaneous Bayesian analysis of both membership probabilities and the contribution of binary orbital motion to the observed velocity dispersion within a 14-parameter likelihood. We apply our method to the Segue 1 dwarf galaxy and conclude that Segue 1 is a dark-matter-dominated galaxy at high probability with an intrinsic velocity dispersion of 3.7^{+1.4}_{-1.1} km/sec. The dark matter halo required to produce this dispersion must have an average density of 2.5^{+4.1}_{-1.9} solar mass/pc^3 within a sphere that encloses half the galaxy's stellar luminosity. This is the highest measured density of dark matter in the Local Group. Our results show that a significant fraction of the stars in Segue 1 may be binaries with the most probable mean period close to 10 years, but also consistent with the 180 year mean period seen in the solar vicinity at about 1 sigma. Despite this binary population, the possibility that Segue 1 is a bound star cluster with the observed velocity dispersion arising from the orbital motion of binary stars is disfavored by the multi-epoch stellar velocity data at greater than 99% C.L. Finally, our treatment yields a projected (two-dimensional) half-light radius for the stellar profile of Segue 1 of 28^{+5}_{-4} pc, in excellent agreement with photometric measurements.Comment: 15 pages, 19 figure

    Willman 1 - a probable dwarf galaxy with an irregular kinematic distribution

    Get PDF
    We investigate the kinematic properties and stellar population of the Galactic satellite Willman 1 (Wil 1) by combining Keck/DEIMOS spectroscopy with KPNO mosaic camera imaging. Wil 1 is an ultra-low luminosity Milky Way companion. This object lies in a region of size-luminosity space (M_V ~ -2 mag, d ~ 38 kpc, r_half ~ 20 pc) also occupied by the Galactic satellites Bo\"otes II and Segue 1 and 2, but no other known old stellar system. We use kinematic and color-magnitude criteria to identify 45 stars as possible members of Wil 1. With a systemic velocity of v_helio = -12.8 +/- 1.0 km/s, Wil 1 stars have velocities similar to those of foreground Milky Way stars. Informed by Monte-Carlo simulations, we identify 5 of the 45 candidate member stars as likely foreground contaminants. We confirm a significant spread in the abundances of the likely Wil 1 red giant branch members ([Fe/H] = -1.73 +/- 0.12 and -2.65 +/- 0.12, [Ca/Fe] = -0.4 +/- 0.18 and +0.13 +/- 0.28). This spread supports the scenario that Wil 1 is an ultra-low luminosity dwarf galaxy rather than a star cluster. Wil 1's innermost stars move with radial velocities offset by 8 km/s from its outer stars and have a velocity dispersion consistent with 0 km/s, suggesting that Wil 1 may not be in dynamical equilibrium. The combination of the foreground contamination and unusual kinematic distribution make it difficult to robustly determine the dark matter mass of Wil 1. As a result, X-ray or gamma-ray observations of Wil 1 that attempt to constrain models of particle dark matter using an equilibrium mass model are strongly affected by the systematics in the observations presented here. We conclude that, despite the unusual features in the Wil 1 kinematic distribution, evidence indicates that this object is, or at least once was, a dwarf galaxy.Comment: AJ accepted version. The primary improvements are a detailed investigation of the membership probability (Section 3.4 and new Figures 6, 7 and 8) and the revised spectroscopic [Fe/H] and [Ca/Fe] measurements of the two brightest member stars. Conclusions are unchanged from the submitted versio

    A Complete Spectroscopic Survey of the Milky Way Satellite Segue 1: The Darkest Galaxy

    Get PDF
    We present the results of a comprehensive Keck/DEIMOS spectroscopic survey of the ultra-faint Milky Way satellite galaxy Segue 1. We have obtained velocity measurements for 98.2% of the stars within 67 pc (10 arcmin, or 2.3 half-light radii) of the center of Segue 1 that have colors and magnitudes consistent with membership, down to a magnitude limit of r=21.7. Based on photometric, kinematic, and metallicity information, we identify 71 stars as probable Segue 1 members, including some as far out as 87 pc. After correcting for the influence of binary stars using repeated velocity measurements, we determine a velocity dispersion of 3.7^{+1.4}_{-1.1} km/s, with a corresponding mass within the half-light radius of 5.8^{+8.2}_{-3.1} x 10^5 Msun. The stellar kinematics of Segue 1 require very high mass-to-light ratios unless the system is far from dynamical equilibrium, even if the period distribution of unresolved binary stars is skewed toward implausibly short periods. With a total luminosity less than that of a single bright red giant and a V-band mass-to-light ratio of 3400 Msun/Lsun, Segue 1 is the darkest galaxy currently known. We critically re-examine recent claims that Segue 1 is a tidally disrupting star cluster and that kinematic samples are contaminated by the Sagittarius stream. The extremely low metallicities ([Fe/H] < -3) of two Segue 1 stars and the large metallicity spread among the members demonstrate conclusively that Segue 1 is a dwarf galaxy, and we find no evidence in favor of tidal effects. We also show that contamination by the Sagittarius stream has been overestimated. Segue 1 has the highest measured dark matter density of any known galaxy and will therefore be a prime testing ground for dark matter physics and galaxy formation on small scales.Comment: 24 pages, 4 tables, 11 figures (10 in color). Submitted for publication in ApJ. V3 revised according to comments from the refere

    The protein structure initiative structural genomics knowledgebase

    Get PDF
    The Protein Structure Initiative Structural Genomics Knowledgebase (PSI SGKB, http://kb.psi-structuralgenomics.org) has been created to turn the products of the PSI structural genomics effort into knowledge that can be used by the biological research community to understand living systems and disease. This resource provides central access to structures in the Protein Data Bank (PDB), along with functional annotations, associated homology models, worldwide protein target tracking information, available protocols and the potential to obtain DNA materials for many of the targets. It also offers the ability to search all of the structural and methodological publications and the innovative technologies that were catalyzed by the PSI's high-throughput research efforts. In collaboration with the Nature Publishing Group, the PSI SGKB provides a research library, editorials about new research advances, news and an events calendar to present a broader view of structural biology and structural genomics. By making these resources freely available, the PSI SGKB serves as a bridge to connect the structural biology and the greater biomedical communitie

    Development of a Benchmark Eddy Flux Evapotranspiration Dataset for Evaluation of Satellite-Driven Evapotranspiration Models Over the CONUS

    Get PDF
    A large sample of ground-based evapotranspiration (ET) measurements made in the United States, primarily from eddy covariance systems, were post-processed to produce a benchmark ET dataset. The dataset was produced primarily to support the intercomparison and evaluation of the OpenET satellite-based remote sensing ET (RSET) models and could also be used to evaluate ET data from other models and approaches. OpenET is a web-based service that makes field-delineated and pixel-level ET estimates from well-established RSET models readily available to water managers, agricultural producers, and the public. The benchmark dataset is composed of flux and meteorological data from a variety of providers covering native vegetation and agricultural settings. Flux footprint predictions were developed for each station and included static flux footprints developed based on average wind direction and speed, as well as dynamic hourly footprints that were generated with a physically based model of upwind source area. The two footprint prediction methods were rigorously compared to evaluate their relative spatial coverage. Data from all sources were post-processed in a consistent and reproducible manner including data handling, gap-filling, temporal aggregation, and energy balance closure correction. The resulting dataset included 243,048 daily and 5,284 monthly ET values from 194 stations, with all data falling between 1995 and 2021. We assessed average daily energy imbalance using 172 flux sites with a total of 193,021 days of data, finding that overall turbulent fluxes were understated by about 12% on average relative to available energy. Multiple linear regression analyses indicated that daily average latent energy flux may be typically understated slightly more than sensible heat flux. This dataset was developed to provide a consistent reference to support evaluation of RSET data being developed for a wide range of applications related to water accounting and water resources management at field to watershed scales

    OpenET : filling a critical data gap in water management for the western United States.

    Get PDF
    The lack of consistent, accurate information on evapotranspiration (ET) and consumptive use of water by irrigated agriculture is one of the most important data gaps for water managers in the western United States (U.S.) and other arid agricultural regions globally. The ability to easily access information on ET is central to improving water budgets across the West, advancing the use of data-driven irrigation management strategies, and expanding incentive-driven conservation programs. Recent advances in remote sensing of ET have led to the development of multiple approaches for field-scale ET mapping that have been used for local and regional water resource management applications by U.S. state and federal agencies. The OpenET project is a community-driven effort that is building upon these advances to develop an operational system for generating and distributing ET data at a field scale using an ensemble of six well-established satellite-based approaches for mapping ET. Key objectives of OpenET include: Increasing access to remotely sensed ET data through a web-based data explorer and data services; supporting the use of ET data for a range of water resource management applications; and development of use cases and training resources for agricultural producers and water resource managers. Here we describe the OpenET framework, including the models used in the ensemble, the satellite, meteorological, and ancillary data inputs to the system, and the OpenET data visualization and access tools. We also summarize an extensive intercomparison and accuracy assessment conducted using ground measurements of ET from 139 flux tower sites instrumented with open path eddy covariance systems. Results calculated for 24 cropland sites from Phase I of the intercomparison and accuracy assessment demonstrate strong agreement between the satellite-driven ET models and the flux tower ET data. For the six models that have been evaluated to date (ALEXI/DisALEXI, eeMETRIC, geeSEBAL, PT-JPL, SIMS, and SSEBop) and the ensemble mean, the weighted average mean absolute error (MAE) values across all sites range from 13.6 to 21.6 mm/month at a monthly timestep, and 0.74 to 1.07 mm/day at a daily timestep. At seasonal time scales, for all but one of the models the weighted mean total ET is within ±8% of both the ensemble mean and the weighted mean total ET calculated from the flux tower data. Overall, the ensemble mean performs as well as any individual model across nearly all accuracy statistics for croplands, though some individual models may perform better for specific sites and regions. We conclude with three brief use cases to illustrate current applications and benefits of increased access to ET data, and discuss key lessons learned from the development of OpenET
    corecore