30 research outputs found

    Drosophila eiger Mutants Are Sensitive to Extracellular Pathogens

    Get PDF
    We showed previously that eiger, the Drosophila tumor necrosis factor homolog, contributes to the pathology induced by infection with Salmonella typhimurium. We were curious whether eiger is always detrimental in the context of infection or if it plays a role in fighting some types of microbes. We challenged wild-type and eiger mutant flies with a collection of facultative intracellular and extracellular pathogens, including a fungus and Gram-positive and Gram-negative bacteria. The response of eiger mutants divided these microbes into two groups: eiger mutants are immunocompromised with respect to extracellular pathogens but show no change or reduced sensitivity to facultative intracellular pathogens. Hence, eiger helps fight infections but also can cause pathology. We propose that eiger activates the cellular immune response of the fly to aid clearance of extracellular pathogens. Intracellular pathogens, which can already defeat professional phagocytes, are unaffected by eiger

    The Circadian Clock Protein Timeless Regulates Phagocytosis of Bacteria in Drosophila

    Get PDF
    Survival of bacterial infection is the result of complex host-pathogen interactions. An often-overlooked aspect of these interactions is the circadian state of the host. Previously, we demonstrated that Drosophila mutants lacking the circadian regulatory proteins Timeless (Tim) and Period (Per) are sensitive to infection by S. pneumoniae. Sensitivity to infection can be mediated either by changes in resistance (control of microbial load) or tolerance (endurance of the pathogenic effects of infection). Here we show that Tim regulates resistance against both S. pneumoniae and S. marcescens. We set out to characterize and identify the underlying mechanism of resistance that is circadian-regulated. Using S. pneumoniae, we found that resistance oscillates daily in adult wild-type flies and that these oscillations are absent in Tim mutants. Drosophila have at least three main resistance mechanisms to kill high levels of bacteria in their hemolymph: melanization, antimicrobial peptides, and phagocytosis. We found that melanization is not circadian-regulated. We further found that basal levels of AMP gene expression exhibit time-of-day oscillations but that these are Tim-independent; moreover, infection-induced AMP gene expression is not circadian-regulated. We then show that phagocytosis is circadian-regulated. Wild-type flies exhibit up-regulated phagocytic activity at night; Tim mutants have normal phagocytic activity during the day but lack this night-time peak. Tim appears to regulate an upstream event in phagocytosis, such as bacterial recognition or activation of phagocytic hemocytes. Interestingly, inhibition of phagocytosis in wild type flies results in survival kinetics similar to Tim mutants after infection with S. pneumoniae. Taken together, these results suggest that loss of circadian oscillation of a specific immune function (phagocytosis) can have significant effects on long-term survival of infection

    Rational manipulation of mRNA folding free energy allows rheostat control of pneumolysin production by Streptococcus pneumoniae

    Get PDF
    Rational manipulation of mRNA folding free energy allows rheostat control of pneumolysin production by Streptococcus pneumoniaeThe contribution of specific factors to bacterial virulence is generally investigated through creation of genetic "knockouts" that are then compared to wild-type strains or complemented mutants. This paradigm is useful to understand the effect of presence vs. absence of a specific gene product but cannot account for concentration-dependent effects, such as may occur with some bacterial toxins. In order to assess threshold and dose-response effects of virulence factors, robust systems for tunable expression are required. Recent evidence suggests that the folding free energy (?G) of the 5' end of mRNA transcripts can have a significant effect on translation efficiency and overall protein abundance. Here we demonstrate that rational alteration of 5' mRNA folding free energy by introduction of synonymous mutations allows for predictable changes in pneumolysin (PLY) expression by Streptococcus pneumoniae without the need for chemical inducers or heterologous promoters. We created a panel of isogenic S. pneumoniae strains, differing only in synonymous (silent) mutations at the 5' end of the PLY mRNA that are predicted to alter ?G. Such manipulation allows rheostat-like control of PLY production and alters the cytotoxicity of whole S. pneumoniae on primary and immortalized human cells. These studies provide proof-of-principle for further investigation of mRNA ?G manipulation as a tool in studies of bacterial pathogenesis.National Institutes of Health (www.nih.gov) (R01 AI092743 and R21 AI111020 to A.J.R.). F.E.A. was supported by the Portuguese Foundation for Science and Technology (www.fct.pt) SFRH/BD/33901/2009 and the Luso-American Development Foundation (www.flad.pt). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Data from: Automated analysis of long-term grooming behavior in Drosophila using a k-nearest neighbors classifier

    Get PDF
    Despite being pervasive, the control of programmed grooming is poorly understood. We addressed this gap by developing a high-throughput platform that allows long-term detection of grooming in Drosophila melanogaster. In our method, a k-nearest neighbors algorithm automatically classifies fly behavior and finds grooming events with over 90% accuracy in diverse genotypes. Our data show that flies spend ~13% of their waking time grooming, driven largely by two major internal programs. One of these programs regulates the timing of grooming and involves the core circadian clock components cycle, clock, and period. The second program regulates the duration of grooming and, while dependent on cycle and clock, appears to be independent of period. This emerging dual control model in which one program controls timing and another controls duration, resembles the two-process regulatory model of sleep. Together, our quantitative approach presents the opportunity for further dissection of mechanisms controlling long-term grooming in Drosophila

    Data from: Automated analysis of long-term grooming behavior in Drosophila using a k-nearest neighbors classifier

    No full text
    Despite being pervasive, the control of programmed grooming is poorly understood. We addressed this gap by developing a high-throughput platform that allows long-term detection of grooming in Drosophila melanogaster. In our method, a k-nearest neighbors algorithm automatically classifies fly behavior and finds grooming events with over 90% accuracy in diverse genotypes. Our data show that flies spend ~13% of their waking time grooming, driven largely by two major internal programs. One of these programs regulates the timing of grooming and involves the core circadian clock components cycle, clock, and period. The second program regulates the duration of grooming and, while dependent on cycle and clock, appears to be independent of period. This emerging dual control model in which one program controls timing and another controls duration, resembles the two-process regulatory model of sleep. Together, our quantitative approach presents the opportunity for further dissection of mechanisms controlling long-term grooming in Drosophila
    corecore