226 research outputs found

    Montbouy – Craon

    Get PDF
    Date de l'opération : 1986 (SU) Inventeur(s) : Milon H ; Milon M.-F Un puits, découvert fortuitement en 1977, lors du creusement d'un fossé de drainage, a fait l’objet d’une fouille de sauvetage en 1986. Il était parementé à sec en moellons de calcaire et avait une profondeur de 7,12 m. Il est probable que sa construction date du IIIe s. Le mobilier très divers provenant de son comblement contenait des fragments d’une jatte en céramique métallescente de type Chenet 323 datable du IVe s., et u..

    Exclusive neuronal expression of SUCLA2 in the human brain

    Get PDF
    SUCLA2 encodes the ATP-forming subunit (A-SUCL-) of succinyl-CoA ligase, an enzyme of the citric acid cycle. Mutations in SUCLA2 lead to a mitochondrial disorder manifesting as encephalomyopathy with dystonia, deafness and lesions in the basal ganglia. Despite the distinct brain pathology associated with SUCLA2 mutations, the precise localization of SUCLA2 protein has never been investigated. Here we show that immunoreactivity of A-SUCL- in surgical human cortical tissue samples was present exclusively in neurons, identified by their morphology and visualized by double labeling with a fluorescent Nissl dye. A-SUCL- immunoreactivity co-localized >99% with that of the d subunit of the mitochondrial F0-F1 ATP synthase. Specificity of the anti-A-SUCL- antiserum was verified by the absence of labeling in fibroblasts from a patient with a complete deletion of SUCLA2. A-SUCL- immunoreactivity was absent in glial cells, identified by antibodies directed against the glial markers GFAP and S100. Furthermore, in situ hybridization histochemistry demonstrated that SUCLA2 mRNA was present in Nissl-labeled neurons but not glial cells labeled with S100. Immunoreactivity of the GTP-forming subunit (G-SUCL-) encoded by SUCLG2, or in situ hybridization histochemistry for SUCLG2 mRNA could not be demonstrated in either neurons or astrocytes. Western blotting of post mortem brain samples revealed minor G-SUCL- immunoreactivity that was however, not upregulated in samples obtained from diabetic versus non-diabetic patients, as has been described for murine brain. Our work establishes that SUCLA2 is expressed exclusively in neurons in the human cerebral cortex

    The Cryo-EM Structure of a Complete 30S Translation Initiation Complex from Escherichia coli

    Get PDF
    Formation of the 30S initiation complex (30S IC) is an important checkpoint in regulation of gene expression. The selection of mRNA, correct start codon, and the initiator fMet-tRNAfMet requires the presence of three initiation factors (IF1, IF2, IF3) of which IF3 and IF1 control the fidelity of the process, while IF2 recruits fMet-tRNAfMet. Here we present a cryo-EM reconstruction of the complete 30S IC, containing mRNA, fMet-tRNAfMet, IF1, IF2, and IF3. In the 30S IC, IF2 contacts IF1, the 30S subunit shoulder, and the CCA end of fMet-tRNAfMet, which occupies a novel P/I position (P/I1). The N-terminal domain of IF3 contacts the tRNA, whereas the C-terminal domain is bound to the platform of the 30S subunit. Binding of initiation factors and fMet-tRNAfMet induces a rotation of the head relative to the body of the 30S subunit, which is likely to prevail through 50S subunit joining until GTP hydrolysis and dissociation of IF2 take place. The structure provides insights into the mechanism of mRNA selection during translation initiation

    The Diverse and Dynamic Nature of Leishmania Parasitophorous Vacuoles Studied by Multidimensional Imaging

    Get PDF
    An important area in the cell biology of intracellular parasitism is the customization of parasitophorous vacuoles (PVs) by prokaryotic or eukaryotic intracellular microorganisms. We were curious to compare PV biogenesis in primary mouse bone marrow-derived macrophages exposed to carefully prepared amastigotes of either Leishmania major or L. amazonensis. While tight-fitting PVs are housing one or two L. major amastigotes, giant PVs are housing many L. amazonensis amastigotes. In this study, using multidimensional imaging of live cells, we compare and characterize the PV biogenesis/remodeling of macrophages i) hosting amastigotes of either L. major or L. amazonensis and ii) loaded with Lysotracker, a lysosomotropic fluorescent probe. Three dynamic features of Leishmania amastigote-hosting PVs are documented: they range from i) entry of Lysotracker transients within tight-fitting, fission-prone L. major amastigote-housing PVs; ii) the decrease in the number of macrophage acidic vesicles during the L. major PV fission or L. amazonensis PV enlargement; to iii) the L. amazonensis PV remodeling after homotypic fusion. The high content information of multidimensional images allowed the updating of our understanding of the Leishmania species-specific differences in PV biogenesis/remodeling and could be useful for the study of other intracellular microorganisms

    Viability and Burden of Leishmania in Extralesional Sites during Human Dermal Leishmaniasis

    Get PDF
    Understanding of the dynamics and distribution of Leishmania in the human host is fundamental to the targeting of control measures and their evaluation. Amplification of parasite gene sequences in clinical samples from cutaneous leishmaniasis patients has provided evidence of Leishmania in blood, other tissues and sites distinct from the lesion and of persistence of infection after clinical resolution of disease. However, there is uncertainty about the interpretation of the presence of Leishmania DNA as indicative of viable parasites. Because RNA is short-lived and labile, its presence provides an indicator of viability. We amplified Leishmania 7SLRNA, a molecule involved in intracellular protein translocation, to establish viability and estimate parasite load in blood monocytes, tonsil swab samples, and tissue fluid from healthy skin of patients with dermal leishmaniasis. Results showed that during active dermal leishmaniasis, viable Leishmania are present in blood monocytes, tonsils and normal skin in quantities similar to that in lesions, demonstrating widespread dissemination of infection and subclinical involvement of tissues beyond the lesion site. Leishmania 7SLRNA will be useful in deciphering the role of human infection in transmission

    Discovery of Markers of Exposure Specific to Bites of Lutzomyia longipalpis, the Vector of Leishmania infantum chagasi in Latin America

    Get PDF
    Leishmania parasites are transmitted by the bite of an infected vector sand fly that injects salivary molecules into the host skin during feeding. Certain salivary molecules can produce antibodies and can be used as an indicator of exposure to a vector sand fly and potentially the disease it transmits. Here we identified potential markers of specific exposure to the sand fly Lutzomyia longipalpis, the vector of visceral leishmaniasis in Latin America. Initially, we determined which of the salivary proteins produce antibodies in humans, dogs, and foxes from areas endemic for the disease. To identify potential specific markers of vector exposure, we produced nine different recombinant salivary proteins from Lu. longipalpis and tested for their recognition by individuals exposed to another human-biting sand fly, Lu. intermedia, that transmits cutaneous leishmaniasis and commonly occurs in the same endemic areas as Lu. longipalpis. Two of the nine salivary proteins were recognized only by humans exposed to Lu. longipalpis, suggesting they are immunogenic proteins and may be useful in epidemiological studies. The identification of specific salivary proteins as potential markers of exposure to vector sand flies will increase our understanding of vector–human interaction, bring new insights to vector control, and in some instances act as an indicator for risk of acquiring disease

    CD8+ T Cells as a Source of IFN-γ Production in Human Cutaneous Leishmaniasis

    Get PDF
    Cutaneous leishmaniasis (CL) is usually a self-healing skin lesion caused by different species of Leishmania parasite. Resistance and susceptibility of mice to Leishmania major infection is associated with two types of CD4+ T lymphocytes development: Th1 type response with production of cytokine IFN-γ is associated with resistance, whereas Th2 type response with production of cytokines IL-4 and IL-5 is associated with susceptibility. A clear Th1/Th2 dichotomy similar to murine model is not defined in human leishmaniasis and we need as much information as possible to define marker(s) of protection. We purified CD4+/CD8+ T cells, stimulated them with Leishmania antigens and analysed gene and protein expression of Th1/Th2 cytokines in volunteers with a history of self-healing CL who are presumed to be protected against further Leishmania infection. We have seen significant upregulation of IFN-γ gene expression and high IFN-γ production in the Leishmania stimulated CD4+ T cells and CD8+ T cells. We concluded that both antigen-specific IFN-γ producing CD4+ Th1 cells and IFN-γ producing CD8+ T cells contribute to the long term protection in individuals with a history of CL. This proves the importance of CD8+ T cells as a source of IFN-γ in Th1-like immune responses

    C-Terminal Domain Deletion Enhances the Protective Activity of cpa/cpb Loaded Solid Lipid Nanoparticles against Leishmania major in BALB/c Mice

    Get PDF
    Cutaneous leishmaniasis (CL) is the most common form of leishmaniasis with an annual incidence of approximately 2 million cases and is endemic in 88 countries, including Iran. CL's continued spread, along with rather ineffectual treatments and drug-resistant variants emergence has increased the need for advanced preventive strategies. We studied Type II cysteine proteinase (CPA) and Type I (CPB) with its C-terminal extension (CTE) as cocktail DNA vaccine against murine and canine leishmaniasis. However, adjuvants' success in enhancing immune responses to selected antigens led us to refocus our vaccine development programs. Herein, we discuss cationic solid lipid nanoparticles' (cSLN) ability to improve vaccine-induced protective efficacy against CL and subsequent lesion size and parasite load reduction in BALB/c mice. For this work, we evaluated five different conventional as well as novel parasite detection techniques, i.e., footpad imaging, footpad flowcytometry and lymph node flowcytometry for disease progression assessments. Vaccination with cSLN-cpa/cpb-CTE formulation showed highest parasite inhibition at 3-month post vaccination. Immunized mice showed reduced IL-5 level and significant IFN-ã increase, compared to control groups. We think our study represents a potential future and a major step forward in vaccine development against leishmaniasis

    Leishmania-Specific Surface Antigens Show Sub-Genus Sequence Variation and Immune Recognition

    Get PDF
    Single-celled Leishmania parasites, transmitted by sand flies, infect humans and other mammals in many tropical and sub-tropical regions, giving rise to a spectrum of diseases called the leishmaniases. Species of parasite within the Leishmania genus can be divided into two groups (referred to as sub-genera) that are separated by up to 100 million years of evolution yet are highly related at the genome level. Our research is focused on identifying gene differences between these sub-genera that may identify proteins that impact on the transmission and pathogenicity of different Leishmania species. Here we report the presence of a highly-variant genomic locus (OHL) that was previously described as absent in parasites of the L. (Viannia) subgenus (on the basis of lack of key genes) but is present and well-characterised (as the LmcDNA16 locus) in all members of the alternative subgenus, L. (Leishmania). We demonstrate that the proteins encoded within the LmcDNA16 and OHL loci are similar in their structure and surface localisation in mammalian-infective amastigotes, despite significant differences in their DNA sequences. Most importantly, we demonstrate that the OHL locus proteins, like the HASP proteins from the LmcDNA16 locus, contain highly variable amino acid repeats that are antigenic in man and may therefore contribute to future vaccine development
    corecore