453 research outputs found

    Guía de Formación ASCENT. Módulo 3. Habilidades blandas

    Get PDF
    Las competencias se han convertido en los últimos años en una forma de describir, evaluar, analizar y valorar los perfiles profesionales en general, y muy especialmente los diseños que se desarrollan en el contexto universitario (currículo, profesorado, formación del alumnado, etc.)Nos últimos anos, as competências tornaram-se uma forma de descrever, avaliar, analisar e avaliar os perfis profissionais em geral, e especialmente os desenhos desenvolvidos no contexto universitário (currículo, corpo docente, formaçao de alunos, etc.)

    Human meniscus cells express hypoxia inducible factor-1α and increased SOX9 in response to low oxygen tension in cell aggregate culture

    Get PDF
    In previous work we demonstrated that the matrix-forming phenotype of cultured human cells from whole meniscus was enhanced by hypoxia (5% oxygen). Because the meniscus contains an inner region that is devoid of vasculature and an outer vascular region, here we investigate, by gene expression analysis, the separate responses of cells isolated from the inner and outer meniscus to lowered oxygen, and compared it with the response of articular chondrocytes. In aggregate culture of outer meniscus cells, hypoxia (5% oxygen) increased the expression of type II collagen and SOX9 (Sry-related HMG box-9), and decreased the expression of type I collagen. In contrast, with inner meniscus cells, there was no increase in SOX9, but type II collagen and type I collagen increased. The articular chondrocytes exhibited little response to 5% oxygen in aggregate culture, with no significant differences in the expression of these matrix genes and SOX9. In both aggregate cultures of outer and inner meniscus cells, but not in chondrocytes, there was increased expression of collagen prolyl 4-hydroxylase (P4H)α(I) in response to 5% oxygen, and this hypoxia-induced expression of P4Hα(I) was blocked in monolayer cultures of meniscus cells by the hypoxia-inducible factor (HIF)-1α inhibitor (YC-1). In fresh tissue from the outer and inner meniscus, the levels of expression of the HIF-1α gene and downstream target genes (namely, those encoding P4Hα(I) and HIF prolyl 4-hydroxylase) were significantly higher in the inner meniscus than in the outer meniscus. Thus, this study revealed that inner meniscus cells were less responsive to 5% oxygen tension than were outer meniscus cells, and they were both more sensitive than articular chondrocytes from a similar joint. These results suggest that the vasculature and greater oxygen tension in the outer meniscus may help to suppress cartilage-like matrix formation

    Spatial organization acts on cell signaling: how physical force contributes to the development of cancer

    Get PDF
    Cells constantly encounter physical forces and respond to neighbors and circulating factors by triggering intracellular signaling cascades that in turn affect their behavior. The mechanisms by which cells transduce mechanical signals to downstream biochemical changes are not well understood. In their work, Salaita and coworkers show that the spatial organization of cell surface receptors is crucial for mechanotransduction. Consequently, force modulation that disrupts the mechanochemical coupling may represent a critical step in cancerogenesis

    Differential cartilaginous tissue formation by human synovial membrane, fat pad, meniscus cells and articular chondrocytes

    Get PDF
    Objective: To identify an appropriate cell source for the generation of meniscus substitutes, among those which would be available by arthroscopy of injured knee joints. Methods: Human inner meniscus cells, fat pad cells (FPC), synovial membrane cells (SMC) and articular chondrocytes (AC) were expanded with or without specific growth factors (Transforming growth factor-betal, Fibroblast growth factor-2 and Plate let-derived growth factor bb, TFP) and then induced to form three-dimensional cartilaginous tissues in pellet cultures, or using a hyaluronan-based scaffold (Hyaff(R)-11), in culture or in nude mice. Human native menisci were assessed as reference. Results: Cell expansion with TFP enhanced glycosaminoglycan (GAG) deposition by all cell types (up to 4.1-fold) and messenger RNA expression of collagen type II by FPC and SMC (up to 472-fold) following pellet culture. In all models, tissues generated by AC contained the highest fractions of GAG (up to 1.9 were positively stained for collagen type II (specific of the inner avascular region of meniscus), type IV (mainly present in the outer vascularized region of meniscus) and types I, III and VI (common to both meniscus regions). Instead, inner meniscus, FPC and SMC developed tissues containing negligible GAG and no detectable collagen type II protein. Tissues generated by AC remained biochemically and phenotypically stable upon ectopic implantation. Conclusions: Under our experimental conditions, only AC generated tissues containing relevant amounts of GAG and with cell phenotypes compatible with those of the inner and outer meniscus regions. Instead, the other investigated cell sources formed tissues resembling only the outer region of meniscus. It remains to be determined whether grafts based on AC will have the ability to reach the complex structural and functional organization typical of meniscus tissue. (C) 2006 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights rese

    The N-glycan processing enzymes α-mannosidase and β-D-N-acetylhexosaminidase are involved in ripening-associated softening in the non-climacteric fruits of capsicum

    Get PDF
    Excessive softening of fruits during the ripening process leads to deterioration. This is of significant global importance as softening-mediated deterioration leads to huge postharvest losses. N-glycan processing enzymes are reported to play an important role during climacteric fruit softening: however, to date these enzymes have not been characterized in non-climacteric fruit. Two ripening-specific N-glycan processing enzymes, α-mannosidase (α-Man) and β-D-N-acetylhexosaminidase (β-Hex), have been identified and targeted to enhance the shelf life in non-climacteric fruits such as capsicum (Capsicum annuum). The purification, cloning, and functional characterization of α-Man and β-Hex from capsicum, which belong to glycosyl hydrolase (GH) families 38 and 20, respectively, are described here. α-Man and β-Hex are cell wall glycoproteins that are able to cleave terminal α-mannose and β-D-N-acetylglucosamine residues of N-glycans, respectively. α-Man and β-Hex transcripts as well as enzyme activity increase with the ripening and/or softening of capsicum. The function of α-Man and β-Hex in capsicum softening is investigated through RNA interference (RNAi) in fruits. α-Man and β-Hex RNAi fruits were approximately two times firmer compared with the control and fruit deterioration was delayed by approximately 7 d. It is shown that silencing of α-Man and β-Hex enhances fruit shelf life due to the reduced degradation of N-glycoproteins which resulted in delayed softening. Altogether, the results provide evidence for the involvement of N-glycan processing in non-climacteric fruit softening. In conclusion, genetic engineering of N-glycan processing can be a common strategy in both climacteric and non-climacteric species to reduce the post-harvest crop losses
    corecore