40 research outputs found
A Novel Type I Receptor Serine-Threonine Kinase Predominantly Expressed in the Adult Central Nervous System*
Receptor serine-threonine kinases (RSTK) mediate inhibitory as well as stimulatory signals for growth and differentiation by binding to members of the transforming growth factor-beta (TGF-beta) superfamily. Over 12 different RSTKs have been isolated so far, displaying wide expression in peripheral tissues and in the nervous system. Here we report the isolation and characterization of a novel type I RSTK termed activin receptor-like kinase-7 (ALK-7) that, unlike other members of this receptor family, is predominantly expressed in the adult central nervous system. The ALK-7 gene encodes a 55-kDa cell-surface protein that exhibits up to 78% amino acid sequence identity in the kinase domain to previously isolated type I receptors for TGF-beta and activin. In the extracellular domain, however, ALK-7 is more divergent, displaying comparable similarities with all members of the ALK subfamily. RNase protection and in situ hybridization studies demonstrated a highly specific mRNA distribution restricted to neurons in several regions of the adult rat central nervous system, including cerebellum, hippocampus, and nuclei of the brainstem. Receptor reconstitution and cross-linking experiments indicated that ALK-7 can form complexes with type II RSTKs for TGF-beta and activin in a ligand-dependent manner, although direct binding of ALK-7 to ligand in these complexes could not be demonstrated. The specific expression pattern of ALK-7, restricted to the postnatal central nervous system, indicates that this receptor may play an important role in the maturation and maintenance of several neuronal subpopulations
Deep mining of oxysterols and cholestenoic acids in human plasma and cerebrospinal fluid: Quantification using isotope dilution mass spectrometry
Both plasma and cerebrospinal fluid (CSF) are rich in cholesterol and its metabolites. Here we describe in detail a methodology for the identification and quantification of multiple sterols including oxysterols and sterol-acids found in these fluids. The method is translatable to any laboratory with access to liquid chromatography – tandem mass spectrometry. The method exploits isotope-dilution mass spectrometry for absolute quantification of target metabolites. The method is applicable for semi-quantification of other sterols for which isotope labelled surrogates are not available and approximate quantification of partially identified sterols. Values are reported for non-esterified sterols in the absence of saponification and total sterols following saponification. In this way absolute quantification data is reported for 17 sterols in the NIST SRM 1950 plasma along with semi-quantitative data for 8 additional sterols and approximate quantification for one further sterol. In a pooled (CSF) sample used for internal quality control, absolute quantification was performed on 10 sterols, semi-quantification on 9 sterols and approximate quantification on a further three partially identified sterols. The value of the method is illustrated by confirming the sterol phenotype of a patient suffering from ACOX2 deficiency, a rare disorder of bile acid biosynthesis, and in a plasma sample from a patient suffering from cerebrotendinous xanthomatosis, where cholesterol 27-hydroxylase is deficient
Construction and completion of flux balance models from pathway databases
Motivation: Flux balance analysis (FBA) is a well-known technique for genome-scale modeling of metabolic flux. Typically, an FBA formulation requires the accurate specification of four sets: biochemical reactions, biomass metabolites, nutrients and secreted metabolites. The development of FBA models can be time consuming and tedious because of the difficulty in assembling completely accurate descriptions of these sets, and in identifying errors in the composition of these sets. For example, the presence of a single non-producible metabolite in the biomass will make the entire model infeasible. Other difficulties in FBA modeling are that model distributions, and predicted fluxes, can be cryptic and difficult to understand
The Cerebrospinal Fluid Profile of Cholesterol Metabolites in Parkinson’s Disease and Their Association With Disease State and Clinical Features
Disordered cholesterol metabolism is linked to neurodegeneration. In this study we investigated the profile of cholesterol metabolites found in the cerebrospinal fluid (CSF) of Parkinson’s disease (PD) patients. When adjustments were made for confounding variables of age and sex, 7α,(25R)26-dihydroxycholesterol and a second oxysterol 7α,x,y-trihydroxycholest-4-en-3-one (7α,x,y-triHCO), whose exact structure is unknown, were found to be significantly elevated in PD CSF. The likely location of the additional hydroxy groups on the second oxysterol are on the sterol side-chain. We found that CSF 7α-hydroxycholesterol levels correlated positively with depression in PD patients, while two presumptively identified cholestenoic acids correlated negatively with depression
Enteric Microbiome Metabolites Correlate with Response to Simvastatin Treatment
Although statins are widely prescribed medications, there remains considerable variability in therapeutic response. Genetics can explain only part of this variability. Metabolomics is a global biochemical approach that provides powerful tools for mapping pathways implicated in disease and in response to treatment. Metabolomics captures net interactions between genome, microbiome and the environment. In this study, we used a targeted GC-MS metabolomics platform to measure a panel of metabolites within cholesterol synthesis, dietary sterol absorption, and bile acid formation to determine metabolite signatures that may predict variation in statin LDL-C lowering efficacy. Measurements were performed in two subsets of the total study population in the Cholesterol and Pharmacogenetics (CAP) study: Full Range of Response (FR), and Good and Poor Responders (GPR) were 100 individuals randomly selected from across the entire range of LDL-C responses in CAP. GPR were 48 individuals, 24 each from the top and bottom 10% of the LDL-C response distribution matched for body mass index, race, and gender. We identified three secondary, bacterial-derived bile acids that contribute to predicting the magnitude of statin-induced LDL-C lowering in good responders. Bile acids and statins share transporters in the liver and intestine; we observed that increased plasma concentration of simvastatin positively correlates with higher levels of several secondary bile acids. Genetic analysis of these subjects identified associations between levels of seven bile acids and a single nucleotide polymorphism (SNP), rs4149056, in the gene encoding the organic anion transporter SLCO1B1. These findings, along with recently published results that the gut microbiome plays an important role in cardiovascular disease, indicate that interactions between genome, gut microbiome and environmental influences should be considered in the study and management of cardiovascular disease. Metabolic profiles could provide valuable information about treatment outcomes and could contribute to a more personalized approach to therapy
Ethnic entrepreneurs and online home-based businesses: an exploratory study
This exploratory, qualitative study considers how online home-based businesses offer opportunities for ethnic entrepreneurs to ‘break out’ of traditional highly competitive and low margin sectors. Previous studies have found a positive association between ethnic minorities’ high levels of entrepreneurship and home computer use in ethnic groups. Despite these associations, previous studies have overlooked the particular opportunities offered by home-based online businesses to ethnic entrepreneurs. The study adopts mixed embeddedness as a theoretical lens to guide interviews with 22 ethnic entrepreneurs who have started online home-based businesses in the UK. We find online home-based businesses offer ethnic entrepreneurs novel opportunities to draw on their ethnic advantages and address the constraints they face. The unique affordances of this type of business allow entrepreneurs to develop the necessary IT skills by self-learning and experimentation and to sub-contract more difficult or time consuming aspects to others. The findings also show that, consistent with the theory of mixed embeddedness, whilst the entrepreneurs are influenced by social, economic and institutional forces, online businesses allow them to exert their own agency and provide opportunities to uniquely shape these forces
Neurotrophic signalling by GDNF and its receptors
Many investigators have sought a polypeptide which would alleviate the
neuronal loss associated with Parkinson's disease--specifically
dopaminergic neurons of the ventral mesencephalon. The survival of this
population of neurons has been known for some time to be promoted by
soluble factors present in the conditioned media of glial cell lines. It
was from one of these cell lines, B49 rat glioma, that the glial cell
line derived neurotrophic factor (GDNF) was initially isolated based upon
its ability to promote dopamine uptake in primary cultures prepared from
ventral midbrain of embryonic day 14 (E14) rats. Although GDNF was
originally reported to be highly specific for dopaminergic neurons,
subsequent studies have demonstrated other potent neuroprotective actions
such as promoting the survival of cultured and lesioned motorneurons.
We began this study by PCR cloning of the GDNF cDNA, production and
purification of recombinant protein and analysis of GDNF activities on
various peripheral ganglia of the developing chick and rat. These
results, combined with our GDNF mRNA expression studies, suggested that
GDNF functions as a target-derived trophic factor for several populations
of peripheral ganglia during development. Subsequently, we utilized
fibroblasts engineered to secrete high levels of the neurotrophic factor
to identify noradrenergic neurons of the locus coeruleus as a population
which responds to GDNF survival promoting activities following
pharmacological lesion. Subsequent efforts have centered around the
identification and characterization of GDNF receptors. In addition to our
finding that GDNF activities are mediated by the c-ret proto-oncogene, we
have isolated two GDNF receptor-alpha homologues (GFRa2,3) which mediate
GDNF binding to the RET receptor. We have also carried out in situ
hybridization studies of the mRNA expression of GDNF and its receptors in
the normal rat brain and in several regions following mechanical and
pharmacological lesion. Our most recent efforts involve the elucidation
of the intracellular signalling events following GDNF binding to Ret as
well as other non-Ret signalling receptors
Alterations in Self-Aggregating Neuropeptides in Cerebrospinal Fluid of Patients with Parkinsonian Disorders
Background: Parkinson's disease (PD), progressive supranuclear palsy (PSP), and multiple system atrophy (MSA) present with similar movement disorder symptoms but distinct protein aggregates upon pathological examination. Objective: Discovery and validation of candidate biomarkers in parkinsonian disorders for differential diagnosis of subgroup molecular etiologies. Methods: Untargeted liquid chromatography (LC)-mass spectrometry (MS) proteomics was used for discovery profiling in cerebral spinal fluid (CSF) followed by LC-MS/MS based multiple reaction monitoring for validation of candidates. We compared clinical variation within the parkinsonian cohort including PD subgroups exhibiting tremor dominance (TD) or postural instability gait disturbance and those with detectable leukocytes in CSF. Results: We have identified candidate peptide biomarkers and validated related proteins with targeted quantitative multiplexed assays. Dopamine-drug naïve patients at first diagnosis exhibit reduced levels of signaling neuropeptides, chaperones, and processing proteases for packaging of self-aggregating peptides into dense core vesicles. Distinct patterns of biomarkers were detected in the parkinsonian disorders but were not robust enough to offer a differential diagnosis. Different biomarker changes were detected in male and female patients with PD. Subgroup specific candidate biomarkers were identified for TD PD and PD patients with leukocytes detected in CSF. Conclusion: PD, MSA, and PSP exhibit overlapping as well as distinct protein biomarkers that suggest specific molecular etiologies. This indicates common sensitivity of certain populations of selectively vulnerable neurons in the brain, and distinct therapeutic targets for PD subgroups. Our report validates a decrease in CSF levels of self-aggregating neuropeptides in parkinsonian disorders and supports the role of native amyloidogenic proteins in etiologies of neurodegenerative diseases
Label-free detection and quantification of ultrafine particulate matter in lung and heart of mouse and evaluation of tissue injury
While it is known that air borne ultrafine particulate matter (PM) may pass through the pulmonary circulation of blood at the alveolar level between lung and heart and cross the air-blood barrier, the mechanism and effects are not completely clear. In this study the imaging method fluorescence lifetime imaging microscopy is adopted for visualization with high spatial resolution and quantification of ultrafine PM particles in mouse lung and heart tissues. The results showed that the median numbers of particles in lung of mice exposed to ultrafine particulate matter of diameter less than 2.5 µm was about 2.0 times more than that in the filtered air (FA)-treated mice, and about 1.3 times more in heart of ultrafine PM-treated mice than in FA-treated mice. Interestingly, ultrafine PM particles were more abundant in heart than lung, likely due to how ultrafine PM particles are cleared by phagocytosis and transport via circulation from lungs. Moreover, heart tissues showed inflammation and amyloid deposition. The component analysis of concentrated airborne ultrafine PM particles suggested traffic exhausts and industrial emissions as predominant sources. Our results suggest association of ultrafine PM exposure to chronic lung and heart tissue injuries. The current study supports the contention that industrial air pollution is one of the causative factors for rising levels of chronic pulmonary and cardiac diseases
Polyunsaturated Fatty Acids and Their Metabolites in Hyperemesis Gravidarum
Polyunsaturated fatty acids (PUFAs) have been studied in relation to pregnancy. However, there is limited knowledge on PUFAs and their metabolites in relation to hyperemesis gravidarum (HG), a pregnancy complication associated with nutritional deficiencies and excessive vomiting. In order to survey the field, a systematic review of the literature was performed, which also included nausea and vomiting of pregnancy (NVP) due to its close relationship with HG. In the very few published studies found, the main subjects of the research concerned free fatty acids (four records), lipid profiles (three records), and bioactive lipids (one article about prostaglandin E2 and one about endocannabinoids). The authors of these studies concluded that, although no cause-and-effect relationship can be established, HG is linked to increased sympathetic responsiveness, thermogenic activity and metabolic rate. In addition, NVP is linked to a metabolic perturbance (which lasts throughout pregnancy). The low number of retrieved records underlines the need for more research in the area of PUFAs and HG, especially with regard to the underlying mechanism for the detected effects, potentially involving growth differentiation factor 15 (GDF15) since evidence for GDF15 regulation of lipid metabolism and the role for GDF15 and its receptor in nausea and vomiting is emerging