126 research outputs found

    Enrichment of starch-based extruded cereals with chokeberry (Aronia melanocarpa) pomace: Influence of processing conditions on techno-functional and sensory related properties, dietary fibre and polyphenol content as well as in vitro digestibility

    Get PDF
    Aiming at providing prototypes for ready-to-eat texturised (RTE) cereal products with reduced glycaemic load, starch blends with chokeberry (Aronia melanocarpa) pomace powder (CPP) rich in dietary fibre (DF) and polyphenols (PP) were extruded using a co-rotating twin-screw extruder. The CPP ratios (25%, 50%) and processing conditions applied (barrel temperature 100 °C, screw speed 200, 400, 600, 800 min−1, water content 13%, 23%) result in specific mechanical energies of 87–336 Whkg−1 and material temperatures of 111–155 °C. Extrudates containing 25% CPP still offer acceptable techno-functional and sensory related physical properties, while higher CPP ratios result in decreased expansion and cell pore size of the slightly darker and softer extrudates. The in vitro glucose release of both extruded blends is reduced by 25% and 50%, respectively. The DF contents are unaffected. As expected, anthocyanins are degraded by about 70% in both blends while phenolic acids and flavonols are fully retained. All PP are already accessible during the stomach phase of an in vitro digestion and are not changed significantly in the intestinal phases. Overall, these data substantiate, that marketable texturised RTE extruded cereals may be developed based on the results presented and on further sensory analysis

    Extrusion processing of pure chokeberry (Aronia melanocarpa) pomace: impact on dietary fiber profile and bioactive compounds

    Get PDF
    The partial substitution of starch with dietary fiber (DF) in extruded ready-to-eat texturized (RTE) cereals has been suggested as a strategy to reduce the high glycemic index of these food products. Here, we study the impact of extrusion processing on pure chokeberry (Aronia melanocarpa) pomace powder (CPP) rich in DF and polyphenols (PP) focusing on the content and profile of the DF fractions, stability of PP, and techno-functional properties of the extrudates. Using a co-rotating twin-screw extruder, different screw speeds were applied to CPP with different water contents (cw_{w}), which resulted in specific mechanical energies (SME) in the range of 145–222 Whkg−1^{-1} and material temperatures (TM_{M}) in the range of 123–155 °C. High molecular weight soluble DF contents slightly increase with increasing thermomechanical stress up to 16.1 ± 0.8 g/100 g dm as compared to CPP (11.5 ± 1.2 g/100 g dm), but total DF (TDF) contents (58.6 ± 0.8 g/100 g dm) did not change. DF structural analysis revealed extrusion-based changes in the portions of pectic polysaccharides (type I rhamnogalacturonan) in the soluble and insoluble DF fractions. Contents of thermolabile anthocyanins decrease linearly with SME and temperature from 1.80 ± 0.09 g/100 g dm in CPP to 0.24 ± 0.06 g/100 g dm (222 Whkg−1_{-1}, 155 °C), but phenolic acids and flavonoids appear to be largely unaffected. Resulting techno-functional (water absorption and water solubility) and physical properties related to the sensory characteristics (expansion, hardness, and color) of pure CPP extrudates support the expectation that granulated CPP extrudates may be a suitable food ingredient rich in DF and PP

    Impact of defined thermomechanical treatment on the structure and content of dietary fiber and the stability and bioaccessibility of polyphenols of chokeberry (Aronia melanocarpa) pomace

    Get PDF
    Dietary fiber is a potential replacement for other ingredients such as starch in reformulated extruded breakfast cereals. Analysis of chokeberry pomace powder revealed a total dietary fiber content of 57.8 ± 2 g/100 g with 76% being insoluble, 20% high molecular soluble and 4% low molecular soluble dietary fiber. The fiber polysaccharide composition was analyzed in detail by using a variety of analytical approaches. Extrusion-like processing conditions were studies in a Closed Cavity Rheometer enabling the application of defined thermal (temperature range 100–160 °C) and mechanical treatments (shear rates between 0.1 s−1^{-1} and 50 s−1^{-1}) to chokeberry pomace powder. Application of temperatures up to 140 °C irrespective of the mechanical treatment does not remarkably alter dietary fiber structure or content, but reduces the initial content of total polyphenols by about 40% to a final content of 3.3 ± 0.5 g/100 g including 0.63 ± 0.1 g/100 g of anthocyanins, 0.18 ± 0.02 g/100 g of phenolic acids and 0.090 ± 0.007 g/100 g of flavonols, respectively. The retained polyphenols are fully bioaccessible after in vitro digestion, and antioxidant capacity remains unchanged as compared to the untreated pomace powder. Glucose bioaccessibility remains unaffected, whereas glucose content is reduced. It is concluded that chokeberry pomace powder is a good source of dietary fiber with the potential to partially substitute starch in extruded breakfast cereals

    Anti-TNF-Alpha Therapy Enhances the Effects of Enzyme Replacement Therapy in Rats with Mucopolysaccharidosis Type VI

    Get PDF
    Although enzyme replacement therapy (ERT) is available for several lysosomal storage disorders, the benefit of this treatment to the skeletal system is very limited. Our previous work has shown the importance of the Toll-like receptor 4/TNF-alpha inflammatory pathway in the skeletal pathology of the mucopolysaccharidoses (MPS), and we therefore undertook a study to examine the additive benefit of combining anti-TNF-alpha therapy with ERT in a rat model of MPS type VI.MPS VI rats were treated for 8 months with Naglazyme® (recombinant human N-acetyl-galactosamine-4-sulfatase), or by a combined protocol using Naglazyme® and the rat-specific anti-TNF-alpha drug, CNTO1081. Both protocols led to markedly reduced serum levels of TNF-alpha and RANKL, although only the combined treatment reduced TNF-alpha in the articular cartilage. Analysis of cultured articular chondrocytes showed that the combination therapy also restored collagen IIA1 expression, and reduced expression of the apoptotic marker, PARP. Motor activity and mobility were improved by ERT, and these were significantly enhanced by combination treatment. Tracheal deformities in the MPS VI animals were only improved by combination therapy, and there was a modest improvement in bone length. Ceramide levels in the trachea also were markedly reduced. MicroCT analysis did not demonstrate any significant positive effects on bone microarchitecture from either treatment, nor was there histological improvement in the bone growth plates.The results demonstrate that combining ERT with anti-TNF-alpha therapy improved the treatment outcome and led to significant clinical benefit. They also further validate the usefulness of TNF-alpha, RANKL and other inflammatory molecules as biomarkers for the MPS disorders. Further evaluation of this combination approach in other MPS animal models and patients is warranted

    Mucopolysaccharidoses in northern Brazil: Targeted mutation screening and urinary glycosaminoglycan excretion in patients undergoing enzyme replacement therapy

    Get PDF
    Mucopolysaccharidoses (MPS) are rare lysosomal disorders caused by the deficiency of specific lysosomal enzymes responsible for glycosaminoglycan (GAG) degradation. Enzyme Replacement Therapy (ERT) has been shown to reduce accumulation and urinary excretion of GAG, and to improve some of the patients’ clinical signs. We studied biochemical and molecular characteristics of nine MPS patients (two MPS I, four MPS II and three MPS VI) undergoing ERT in northern Brazil. The responsiveness of ERT was evaluated through urinary GAG excretion measurements. Patients were screened for eight common MPS mutations, using PCR, restriction enzyme tests and direct sequencing. Two MPS I patients had the previously reported mutation p.P533R. In the MPS II patients, mutation analysis identified the mutation p.R468W, and in the MPS VI patients, polymorphisms p.V358M and p.V376M were also found. After 48 weeks of ERT, biochemical analysis showed a significantly decreased total urinary GAG excretion in patients with MPS I (p < 0.01) and MPS VI (p < 0.01). Our findings demonstrate the effect of ERT on urinary GAG excretion and suggest the adoption of a screening strategy for genotyping MPS patients living far from the main reference centers

    Not the End of the World? Post-Classical Decline and Recovery in Rural Anatolia

    Get PDF
    Between the foundation of Constantinople as capital of the eastern half of the Roman Empire in 330 CE and its sack by the Fourth Crusade in 1204 CE, the Byzantine Empire underwent a full cycle from political-economic stability, through rural insecurity and agrarian decline, and back to renewed prosperity. These stages plausibly correspond to the phases of over-extension (K), subsequent release (Ω) and recovery (α) of the Adaptive Cycle in Socio-Ecological Systems. Here we track and partly quantify the consequences of those changes in different regions of Anatolia, firstly for rural settlement (via regional archaeological surveys) and secondly for land cover (via pollen analysis). We also examine the impact of climate changes on the agrarian system. While individual histories vary, the archaeological record shows a major demographic decline between ca .650 and ca. 900 CE in central and southwestern Anatolia, which was then a frontier zone between Byzantine and Arab armies. In these regions, and also in northwest Anatolia, century-scale trends in pollen indicate a substantial decline in the production of cereal and tree crops, and a smaller decline in pastoral activity. During the subsequent recovery (α) phase after 900 CE there was strong regional differentiation, with central Anatolia moving to a new economic system based on agro-pastoralism, while lowland areas of northern and western Anatolia returned to the cultivation of commercial crops such as olive trees. The extent of recovery in the agrarian economy was broadly predictable by the magnitude of its preceding decline, but the trajectories of recovery varied between different regions

    Down-Regulation of miR-101 in Endothelial Cells Promotes Blood Vessel Formation through Reduced Repression of EZH2

    Get PDF
    Angiogenesis is a balanced process controlled by pro- and anti-angiogenic molecules of which the regulation is not fully understood. Besides classical gene regulation, miRNAs have emerged as post-transcriptional regulators of angiogenesis. Furthermore, epigenetic changes caused by histone-modifying enzymes were shown to modulate angiogenesis as well. However, a possible interplay between miRNAs and histone-modulating enzymes during angiogenesis has not been described. Here we show that VEGF-mediated down-regulation of miR-101 caused pro-angiogenic effects. We found that the pro-angiogenic effects are partly mediated through reduced repression by miR-101 of the histone-methyltransferase EZH2, a member of the Polycomb group family, thereby increasing methylation of histone H3 at lysine 27 and transcriptome alterations. In vitro, the sprouting and migratory properties of primary endothelial cell cultures were reduced by inhibiting EZH2 through up-regulation of miR-101, siRNA-mediated knockdown of EZH2, or treatment with 3-Deazaneplanocin-A (DZNep), a small molecule inhibitor of EZH2 methyltransferase activity. In addition, we found that systemic DZNep administration reduced the number of blood vessels in a subcutaneous glioblastoma mouse model, without showing adverse toxicities. Altogether, by identifying a pro-angiogenic VEGF/miR-101/EZH2 axis in endothelial cells we provide evidence for a functional link between growth factor-mediated signaling, post-transcriptional silencing, and histone-methylation in the angiogenesis process. Inhibition of EZH2 may prove therapeutic in diseases in which aberrant vascularization plays a role

    Advancing brain barriers RNA sequencing: guidelines from experimental design to publication

    Get PDF
    Background: RNA sequencing (RNA-Seq) in its varied forms has become an indispensable tool for analyzing differential gene expression and thus characterization of specific tissues. Aiming to understand the brain barriers genetic signature, RNA seq has also been introduced in brain barriers research. This has led to availability of both, bulk and single-cell RNA-Seq datasets over the last few years. If appropriately performed, the RNA-Seq studies provide powerful datasets that allow for significant deepening of knowledge on the molecular mechanisms that establish the brain barriers. However, RNA-Seq studies comprise complex workflows that require to consider many options and variables before, during and after the proper sequencing process.Main body: In the current manuscript, we build on the interdisciplinary experience of the European PhD Training Network BtRAIN (https://www.btrain-2020.eu/) where bioinformaticians and brain barriers researchers collaborated to analyze and establish RNA-Seq datasets on vertebrate brain barriers. The obstacles BtRAIN has identified in this process have been integrated into the present manuscript. It provides guidelines along the entire workflow of brain barriers RNA-Seq studies starting from the overall experimental design to interpretation of results. Focusing on the vertebrate endothelial blood–brain barrier (BBB) and epithelial blood-cerebrospinal-fluid barrier (BCSFB) of the choroid plexus, we provide a step-by-step description of the workflow, highlighting the decisions to be made at each step of the workflow and explaining the strengths and weaknesses of individual choices made. Finally, we propose recommendations for accurate data interpretation and on the information to be included into a publication to ensure appropriate accessibility of the data and reproducibility of the observations by the scientific community.Conclusion: Next generation transcriptomic profiling of the brain barriers provides a novel resource for understanding the development, function and pathology of these barrier cells, which is essential for understanding CNS homeostasis and disease. Continuous advancement and sophistication of RNA-Seq will require interdisciplinary approaches between brain barrier researchers and bioinformaticians as successfully performed in BtRAIN. The present guidelines are built on the BtRAIN interdisciplinary experience and aim to facilitate collaboration of brain barriers researchers with bioinformaticians to advance RNA-Seq study design in the brain barriers community

    Mucopolysaccharidosis VI

    Get PDF
    Mucopolysaccharidosis VI (MPS VI) is a lysosomal storage disease with progressive multisystem involvement, associated with a deficiency of arylsulfatase B leading to the accumulation of dermatan sulfate. Birth prevalence is between 1 in 43,261 and 1 in 1,505,160 live births. The disorder shows a wide spectrum of symptoms from slowly to rapidly progressing forms. The characteristic skeletal dysplasia includes short stature, dysostosis multiplex and degenerative joint disease. Rapidly progressing forms may have onset from birth, elevated urinary glycosaminoglycans (generally >100 μg/mg creatinine), severe dysostosis multiplex, short stature, and death before the 2nd or 3rd decades. A more slowly progressing form has been described as having later onset, mildly elevated glycosaminoglycans (generally <100 μg/mg creatinine), mild dysostosis multiplex, with death in the 4th or 5th decades. Other clinical findings may include cardiac valve disease, reduced pulmonary function, hepatosplenomegaly, sinusitis, otitis media, hearing loss, sleep apnea, corneal clouding, carpal tunnel disease, and inguinal or umbilical hernia. Although intellectual deficit is generally absent in MPS VI, central nervous system findings may include cervical cord compression caused by cervical spinal instability, meningeal thickening and/or bony stenosis, communicating hydrocephalus, optic nerve atrophy and blindness. The disorder is transmitted in an autosomal recessive manner and is caused by mutations in the ARSB gene, located in chromosome 5 (5q13-5q14). Over 130 ARSB mutations have been reported, causing absent or reduced arylsulfatase B (N-acetylgalactosamine 4-sulfatase) activity and interrupted dermatan sulfate and chondroitin sulfate degradation. Diagnosis generally requires evidence of clinical phenotype, arylsulfatase B enzyme activity <10% of the lower limit of normal in cultured fibroblasts or isolated leukocytes, and demonstration of a normal activity of a different sulfatase enzyme (to exclude multiple sulfatase deficiency). The finding of elevated urinary dermatan sulfate with the absence of heparan sulfate is supportive. In addition to multiple sulfatase deficiency, the differential diagnosis should also include other forms of MPS (MPS I, II IVA, VII), sialidosis and mucolipidosis. Before enzyme replacement therapy (ERT) with galsulfase (Naglazyme®), clinical management was limited to supportive care and hematopoietic stem cell transplantation. Galsulfase is now widely available and is a specific therapy providing improved endurance with an acceptable safety profile. Prognosis is variable depending on the age of onset, rate of disease progression, age at initiation of ERT and on the quality of the medical care provided
    • …
    corecore