19 research outputs found

    Luminiscent and Magnetic Tb-MOF Flakes Deposited on Silica

    Get PDF
    The synthesis of a terbium-based 2D metal-organic framework (MOF), of formula [Tb(MeCOO)(PhCOO)2] (1), a crystalline material formed by neutral nanosheets held together by Van der Waals interactions, is presented. The material can be easily exfoliated by sonication and deposited onto different substrates. Uniform distributions of Tb-2D MOF flakes onto silicon were obtained by spin-coating. We report the luminescent and magnetic properties of the deposited flakes compared with those of the bulk. Complex 1 is luminescent in the visible and has a sizeable quantum yield of QY = 61% upon excitation at 280 nm. Photoluminescence measurements performed using a micro-Raman set up allowed us to characterize the luminescent spectra of individual flakes on silicon. Magnetization measurements of flakes-on-silicon with the applied magnetic field in-plane and out-of-plane display anisotropy. Ac susceptibility measurements show that 1 in bulk exhibits field-induced slow relaxation of the magnetization through two relaxation paths and the slowest one, with a relaxation time of tlf ⇡ 0.5 s, is assigned to a direct process mechanism. The reported exfoliation of lanthanide 2D-MOFs onto substrates is an attractive approach for the development of multifunctional materials and devices for different applications

    Integration of functional complex oxide nanomaterials on silicon

    Get PDF
    The combination of standard wafer-scale semiconductor processing with the properties of functional oxides opens up to innovative and more efficient devices with high value applications which can be produced at large scale. This review uncovers the main strategies that are successfully used to monolithically integrate functional complex oxide thin films and nanostructures on silicon: the chemical solution deposition approach (CSD) and the advanced physical vapor deposition techniques such as oxide molecular beam epitaxy (MBE). Special emphasis will be placed on complex oxide nanostructures epitaxially grown on silicon using the combination of CSD and MBE. Several examples will be presented, with a particular stress on the control of interfaces and crystallization mechanisms on epitaxial perovskite oxide thin films, nanostructured quartz thin films, and octahedral molecular sieve nanowires. This review enlightens on the potential of complex oxide nanostructures and the combination of both chemical and physical elaboration techniques for novel oxide-based integrated devicesAC acknowledges the financial support from 1D-RENOX project (Cellule Energie INSIS-CNRS). J.M.V.-F. also acknowledges MINECO for support with a Ph.D. grant of the FPI program. We thank David Montero and L. Picas for technical support. We also thank P. Regreny, C. Botella, J.B. Goure for technical assistance on the Nanolyon technological platform. We acknowledge MICINN (MAT2008-01022 MAT2011-28874-c02-01 and MAT2012-35324), Consolider NANOSELECT (CSD2007-00041), Generalitat de Catalunya (2009 SGR 770 and Xarmae), and EU (HIPERCHEM, NMP4-CT2005-516858) projects. The HAADF-STEM microscopy work was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. This research was supported by the European Research Council (ERC StG-2DTHERMS), Ministerio de Economía y Competitividad of Spain (MAT2013-44673-R) and EU funding Project “TIPS” Thermally Integrated Smart Photonics Systems Ref: 644453 call H2020-ICT-2014-1S

    Formation of Self-Organized Mn3O4 Nanoinclusions in LaMnO3 Films

    Get PDF
    We present a single-step route to generate ordered nanocomposite thin films of secondary phase inclusions (Mn3O4) in a pristine perovskite matrix (LaMnO3) by taking advantage of the complex phase diagram of manganese oxides. We observed that in samples grown under vacuum growth conditions from a single LaMnO3 stoichiometric target by Pulsed Laser Deposition, the most favorable mechanism to accommodate Mn2+ cations is the spontaneous segregation of self-assembled wedge-like Mn3O4 ferrimagnetic inclusions inside a LaMnO3 matrix that still preserves its orthorhombic structure and its antiferromagnetic bulk-like behavior. A detailed analysis on the formation of the self-assembled nanocomposite films evidences that Mn3O4 inclusions exhibit an epitaxial relationship with the surrounding matrix that it may be explained in terms of a distorted cubic spinel with slight (~9°) c-axis tilting. Furthermore, a Ruddlesden-Popper La2MnO4 phase, helping to the stoichiometry balance, has been identified close to the interface with the substrate. We show that ferrimagnetic Mn3O4 columns influence the magnetic and transport properties of the nanocomposite by increasing its coercive field and by creating local areas with enhanced conductivity in the vicinity of the inclusions

    Vertical (La,Sr)MnO3 Nanorods from Track-Etched Polymers Directly Buffering Substrates

    No full text
    A novel and general methodology for preparing vertical, complex-oxide nanostructures from a sol gel-based polymer-precursor solutions is developed using track-etched polymers directly buffering substrates. This method is able to develop a nanostructure over the entire substrate, the dimensions and localization of the vertical nanostructures being preset by the polymeric nanotemplate. Thereby, nanostructures with lateral sizes in the range of 100 to 300 nm and up to 500 nm in height have been grown. Two examples are presented herein, the latter being the evolution of the initial, metastable nanostructure. Specifically, La0.7Sr0.3MnO3 polycrystalline rods are grown at mild temperatures (800 degrees C); upon strong thermal activation (1000 degrees C) they suffer a profound transformation into vertical, single-crystalline (La,Sr)(x)O-y nanopyramids sitting on a La0.7Sr0.3MnO3 epitaxial wetting layer. The driving force for this outstanding nanostructural evolution is the minimization of the total energy of the system, which is reached by reducing the grain-boundary, total-surface, and strain-relaxation energies. Finally, advanced electron-microscopy techniques are used to highlight the complex phase separation and structural transformations occurring when the metastable state is overcome

    Current status of self-organized epitaxial graphene ribbons on the C face of 6HSiC substrates

    No full text
    International audienceThe current status of long, self-organized, epitaxial graphene ribbons grown on the (000-1) face of 6H-SiC substrates is reviewed. First, starting from the early stage of growth it is shown that on the C-face of 6H-SiC substrates the sublimation process is not homogeneous. Most of the time it starts from defective sites, dislocations or point defects, that define nearly circular flakes surrounded by bare SiC. These flakes have a volcano-like shape with a graphite chimney at center, where the original defect was located. At higher temperature a complete conversion occurs, which is not yet homogeneous on the whole sample. This growth process can be modified by covering the sample with a graphite cap. It changes the physics of the surface reconstruction during the Si-sublimation process and, on the C-face, makes more efficient the reconstruction of few selected terraces with respect to the others. The net result is the formation of strongly step bunched areas with, in between, long and large reconstructed terraces covered by graphitic material. Despite the low intrinsic optical absorption of few graphene layers on SiC, micro-transmission experiments, complemented by micro-Raman spectroscopy, demonstrate that most of this graphitic coverage is made of one or two homogeneous graphene layers. We show also that most of the thermal stress between the graphene layer and the 6H-SiC substrate is relaxed by pleats or wrinkles which are clearly visible on the AFM images. Finally, the results of transport experiments performed on the graphitic ribbons reveal the p-type character of the ribbons

    Electromigration in the dissipative state of high temperature superconducting bridges

    Full text link
    The current stimulated atomic diffusion in YBa2Cu3O7–d superconducting bridges is investigated. A superconductor to insulator transition can be induced by the current controlled electromigration process, whereas the partial recovery of the superconducting state can be achieved by inverting the polarity of the bias. Interestingly, the temperature dependence of the current density JEM(T), above which atomic migration takes place, intersects the critical current density Jc(T) at certain temperature T*. Therefore, for T < T*, the current-induced dissipative state cannot be accessed without leading to irreversible modifications of the material properties. This phenomenon could also lead to the local deterioration of high critical temperature superconducting films abruptly penetrated by thermomagnetic instabilities.The authors acknowledge the - nancial support form the Fonds de la Recherche Sci- enti que - FNRS, Spanish Ministry of Economy and Competitiveness through the Severo Ochoa Programme for Centres of Excellence in R&D (SEV-2015-0496), CONSOLIDER Excellence Network (MAT2015-68994- REDC), COACHSUPENERGY project (MAT2014- 51778-C2-1-R), co- nanced by the European Regional Development Fund, the Research Foundation - Flanders (FWO-Vlaanderen), the COST programme NanoCoHy- bri (CA 16218), and from the Catalan Government with 2017 SGR 1519. A.F.-R. thank Spanish Ministry of Econ- omy for his FPI Spanish grant (BES-2016-077310).Peer reviewe
    corecore