152 research outputs found

    Prediction of vortex shedding from circular and noncircular bodies in subsonic flow

    Get PDF
    An engineering prediction method and associated computer code VTXCLD are presented which predict nose vortex shedding from circular and noncircular bodies in subsonic flow at angles of attack and roll. The axisymmetric body is represented by point sources and doublets, and noncircular cross sections are transformed to a circle by either analytical or numerical conformal transformations. The leeward vortices are modeled by discrete vortices in crossflow planes along the body; thus, the three-dimensional steady flow problem is reduced to a two-dimensional, unsteady, separated flow problem for solution. Comparison of measured and predicted surface pressure distributions, flowfield surveys, and aerodynamic characteristics are presented for bodies with circular and noncircular cross sectional shapes

    Prediction of subsonic vortex shedding from forebodies with chines

    Get PDF
    An engineering prediction method and associated computer code VTXCHN to predict nose vortex shedding from circular and noncircular forebodies with sharp chine edges in subsonic flow at angles of attack and roll are presented. Axisymmetric bodies are represented by point sources and doublets, and noncircular cross sections are transformed to a circle by either analytical or numerical conformal transformations. The lee side vortex wake is modeled by discrete vortices in crossflow planes along the body; thus the three-dimensional steady flow problem is reduced to a two-dimensional, unsteady, separated flow problem for solution. Comparison of measured and predicted surface pressure distributions, flow field surveys, and aerodynamic characteristics are presented for noncircular bodies alone and forebodies with sharp chines

    Wavelet-Based Audio Embedding & Audio/Video Compression

    Get PDF
    With the decline in military spending, the United States relies heavily on state side support. Communications has never been more important. High-quality audio and video capabilities are a must. Watermarking, traditionally used for copyright protection, is used in a new and exciting way. An efficient wavelet-based watermarking technique embeds audio information into a video signal. Several highly effective compression techniques are applied to compress the resulting audio/video signal in an embedded fashion. This wavelet-based compression algorithm incorporates bit plane coding, first difference coding, and Huffman coding. To demonstrate the potential of this audio embedding audio/video compression system, an audio signal is embedded into a video signal and the combined signal is compressed. Results show that overall compression rates of 15:1 can be achieved. The video signal is reconstructed with a median PSNR of nearly 33dB. Finally, the audio signal is extracted with out error

    Trailing Vortex-Induced Loads During Close Encounters in Cruise

    Get PDF
    The trailing vortex induced aerodynamic loads on a Falcon 20G business jet flying in the wake of a DC-8 are predicted to provide a preflight estimate of safe trail distances during flight test measurements in the wake. Static and dynamic loads on the airframe flying in the near wake are shown at a matrix of locations, and the dynamic motion of the Falcon 20G during traverses of the DC-8 primary trailing vortex is simulated. Safe trailing distances for the test flights are determined, and optimum vortex traverse schemes are identified to moderate the motion of the trailing aircraft during close encounters with the vortex wake

    Abstracting GIS Layers from Hyperspectral Imagery

    Get PDF
    The spectral-spatial relationship of materials in a hyperspectral image cube is exploited to partially automate the creation of Geographic Information System (GIS) layers. The topological neighborhood preservation property of the Self Organizing Map (SOM) is clustered into six (partially overlapping) neighborhoods that are mapped into the image domain to locate in-scene structures of similar material type. GIS layers are abstracted through spatial logical and morphological operations on the six image domain material maps and a novel road finding algorithm connects road segments under significant tree-occlusion resulting in a contiguous road network. It is assumed that specific knowledge of the scene (e.g. endmember spectra) is not available. The results are eight separate high-quality GIS layers (Vegetation, Trees, Fields, Buildings, Major Buildings, Roadways, and Parking Areas) that follow the scene features of the hyperspectral image and are separately and automatically labeled. The material maps resulting from clustering the SOM have an 84.3% average accuracy, which increases to 93.9% after spatial processing into GIS layers

    Stochastic Feature Selection with Distributed Feature Spacing for Hyperspectral Data

    Get PDF
    Feature subset selection is a well studied problem in machine learning. One short-coming of many methods is the selection of highly correlated features; a characteristic of hyperspectral data. A novel stochastic feature selection method with three major components is presented. First, we present an optimized feature selection method that maximizes a heuristic using a simulated annealing search which increases the chance of avoiding locally optimum solutions. Second, we exploit local cross correlation pair-wise amongst classes of interest to select suitable features for class discrimination. Third, we adopt the concept of distributed spacing from the multi-objective optimization community to distribute features across the spectrum in order to select less correlated features. The classification performance of our semi-embedded feature selection and classification method is demonstrated on a 12-class textile hyperspectral classification problem under several noise realizations. These results are compared with a variety of feature selection methods that cover a broad range of approaches. Abstract © IEE

    Transition from an M1 to a Mixed Neuroinflammatory Phenotype Increases Amyloid Deposition in APP/PS1 Transgenic Mice

    Get PDF
    BACKGROUND: The polarization to different neuroinflammatory phenotypes has been described in early Alzheimer\u27s disease, yet the impact of these phenotypes on amyloid-beta (Aβ) pathology remains unknown. Short-term studies show that induction of an M1 neuroinflammatory phenotype reduces Aβ, but long-term studies have not been performed that track the neuroinflammatory phenotype. METHODS: Wild-type and APP/PS1 transgenic mice aged 3 to 4 months received a bilateral intracranial injection of adeno-associated viral (AAV) vectors expressing IFNγ or green fluorescent protein in the frontal cortex and hippocampus. Mice were sacrificed 4 or 6 months post-injection. ELISA measurements were used for IFNγ protein levels and biochemical levels of Aβ. The neuroinflammatory phenotype was determined through quantitative PCR. Microglia, astrocytes, and Aβ levels were assessed with immunohistochemistry. RESULTS: AAV expressing IFNγ induced an M1 neuroinflammatory phenotype at 4 months and a mixed phenotype along with an increase in Aβ at 6 months. Microglial staining was increased at 6 months and astrocyte staining was decreased at 4 and 6 months in mice receiving AAV expressing IFNγ. CONCLUSIONS: Expression of IFNγ through AAV successfully induced an M1 phenotype at 4 months that transitioned to a mixed phenotype by 6 months. This transition also appeared with an increase in amyloid burden suggesting that a mixed phenotype, or enhanced expression of M2a and M2c markers, could contribute to increasing amyloid burden and disease progression

    Determining the Role of IL-4 Induced Neuroinflammation in Microglial Activity and Amyloid-ß Using BV2 Microglial Cells and APP/PS1 Transgenic Mice

    Get PDF
    Background Microglia are considered the resident immune cells of the central nervous system (CNS). In response to harmful stimuli, an inflammatory reaction ensues in which microglia are activated in a sequenced spectrum of pro- and antiinflammatory phenotypes that are akin to the well-characterized polarization states of peripheral macrophages. A “classically” activated M1 phenotype is known to eradicate toxicity. The transition to an “alternatively” activated M2 phenotype encompasses neuroprotection and repair. In recent years, inflammation has been considered an accompanying pathology in response to the accumulation of extracellular amyloid-β (Aβ) in Alzheimer’s disease (AD). This study aimed to drive an M2a-biased immune phenotype with IL-4 in vitro and in vivo and to determine the subsequent effects on microglial activation and Aβ pathology. Methods In vitro, exogenous IL-4 was applied to BV2 microglial cell cultures to evaluate the temporal progression of microglial responses. In vivo, intracranial injections of an adeno-associate-virus (AAV) viral vector were performed to assess long-term expression of IL-4 in the frontal cortex and hippocampus of Aβ-depositing, APP/PS1 transgenic mice. Quantitative real-time PCR was used to assess the fold change in expression of biomarkers representing each of the microglial phenotypes in both the animal tissue and the BV2 cells. ELISAs quantified IL-4 expression and Aβ levels. Histological staining permitted quantification of microglial and astrocytic activity. Results Both in vitro and in vivo models showed an enhanced M2a phenotype, and the in vivo model revealed a trend toward a decreased trend in Aβ deposition. Conclusions In summary, this study offers insight into the therapeutic potential of microglial immune response in AD

    Liver transplantation for alcoholic cirrhosis: Long term follow-up and impact of disease recurrence

    Get PDF
    Background. Alcoholic liver disease has emerged as a leading indication for hepatic transplantation, although it is a controversial use of resources. We aimed to examine all aspects of liver transplantation associated with alcohol abuse. Methods. Retrospective cohort analysis of 123 alcoholic patients with a median of 7 years follow-up at one center. Results. In addition to alcohol, 43 (35%) patients had another possible factor contributing to cirrhosis. Actuarial patient and graft survival rates were, respectively, 84% and 81% (1 year); 72% and 66% (5 years); and 63% and 59% (7 years). After transplantation, 18 patients (15%) manifested 21 noncutaneous de novo malignancies, which is significantly more than controls (P=0.0001); upper aerodigestive squamous carcinomas were over-represented (P=0.03). Thirteen patients had definitely relapsed and three others were suspected to have relapsed. Relapse was predicted by daily ethanol consumption (P=0.0314), but not by duration of pretransplant sobriety or explant histology. No patient had alcoholic hepatitis after transplantation and neither late onset acute nor chronic rejection was significantly increased. Multiple regression analyses for predictors of graft failure identified major biliary/vascular complications (P=0.01), chronic bile duct injury on biopsy (P=0.002), and pericellular fibrosis on biopsy (P=0.05); graft viral hepatitis was marginally significant (P=0.07) on univariate analysis. Conclusions. Alcoholic liver disease is an excellent indication for liver transplantation in those without coexistent conditions. Recurrent alcoholic liver disease alone is not an important cause of graft pathology or failure. Potential recipients should be heavily screened before transplantation for coexistent conditions (e.g., hepatitis C, metabolic diseases) and other target-organ damage, especially aerodigestive malignancy, which are greater causes of morbidity and mortality than is recurrent alcohol liver disease
    corecore