69 research outputs found

    Pyro-Sulfate Ion In Solution

    Get PDF

    Reduction of parasitic currents in level-set calculations with a consistent discretization of the surface-tension force for the CSF model

    Get PDF
    Parasitic currents may develop in grid-based interface simulations because of inaccurate representation of the surface forces in the discretized equations. This is due to two causes : firstly, inconsistent discretization of the surface tension force and the pressure gradient, such that the force balance is not fulfilled for a drop or a bubble at rest. Secondly, the problem is inaccurate approximation of the curvature. The least you should demand from a discretization is that it preserves a stationary solution. In this article, it is shown that this can be accomplished by rewriting the interfacial force term in the momentum equation. Using exact curvature, the exact solution for a drop is preserved to machine accuracy. In general, with this discretization, the calculation of the curvature is the only remaining source of spurious currents. Contrary to common practice for the level-set method, we stress that the curvature should be evaluated at the point on the interface whose normal cross the discretization point, and not at the gridpoint in the smeared-out region outside the interface. In 2D, a simple geometrical argument may be used to find the curvature at the interface, whereas in 3D we use extrapolation normal to the interface to create the correct curvature field in a small region around the interface

    In Vitro and In Vivo Performance of Plum (Prunus domestica L.) Pollen from the Anthers Stored at Distinct Temperatures for Different Periods

    Get PDF
    A study was conducted to investigate the effect of different storage periods and temperatures on pollen viability in vitro and in vivo in plum genotypes ‘Valerija’, ‘Čačanska Lepotica’ and ‘Valjevka’. In vitro pollen viability was tested at day 0 (fresh dry pollen) and after 3, 6, 9 and 12 months of storage at four different temperatures (4, −20, −80 and −196◦C), and in vivo after 12 months of storage at distinct temperatures. In vitro germination and fluorescein diacetate (FDA) staining methods were used to test pollen viability, while aniline blue staining was used for observing in vivo pollen tube growth. Fresh pollen germination and viability ranged from 42.35 to 63.79% (‘Valjevka’ and ‘Čačanska Lepotica’, respectively) and 54.58 to 62.15%, (‘Valjevka’ and ‘Valerija’, respectively). With storage at 4◦C, pollen viability and germination decreased over the period, with the lowest value after 12 months of storage. Pollen germination and viability for the other storage temperatures (−20, −80 and −196◦C) were higher than 30% by the end of the 12 months. Pollination using pollen stored at 4◦C showed that pollen tube growth mostly ended in the lower part of the style. With the other storage temperatures, pollen tube growth was similar, ranging between 50 and 100% of the pistils with pollen tubes penetrated into the nucellus of the ovule in the genotype ‘Čačanska Lepotica’. The results of these findings will have implications for plum pollen breeding and conservation. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Nanofluidic transport governed by the liquid/vapour interface

    Get PDF
    Liquid/vapour interfaces govern the behaviour of a wide range of systems but remain poorly understood, leaving ample margin for the exploitation of intriguing functionalities for applications. Here, we systematically investigate the role of liquid/vapour interfaces in the transport of water across apposing liquid menisci in osmosis membranes comprising short hydrophobic nanopores that separate two fluid reservoirs. We show experimentally that mass transport is limited by molecular reflection from the liquid/vapour interface below a certain length scale, which depends on the transmission probability of water molecules across the nanopores and on the condensation probability of a water molecule incident on the liquid surface. This fundamental yet elusive condensation property of water is measured under near-equilibrium conditions and found to decrease from 0.36 ± 0.21 at 30 °C to 0.18 ± 0.09 at 60 °C. These findings define the regime in which liquid/vapour interfaces govern nanofluidic transport and have implications for understanding mass transport in nanofluidic devices, droplets and bubbles, biological components and porous media involving liquid/vapour interfaces.Center for Clean Water and Clean Energy at MIT and KFUPM (Project R10-CW-09

    Crop loading studies on ‘Caricia’ and ‘Eva’ apples grown in a mild winter area

    Get PDF
    The crop load level of an apple (Malus × domestica Borkh.) tree impacts fruit yield and quality parameters, tree vigor and biennial bearing. The optimal crop load is that which allows for consistent annual cropping and fruit quality acceptable to the market. We evaluated the effect of crop load on yield and fruit quality of two low-chill apples cv. ‘Caricia’ and ‘Eva’, growing in a mild winter area. During 2010 and 2011 crop load was manually adjusted from 2 or 3 to 17 fruits cm−2 of trunk cross-sectional area (TCSA). Fruit yield was positively related to crop load in both cultivars but mean fruit weight diminished as the crop load increased. For both cultivars, the production of non-commercial and small-sized fruit increased, whereas production of middle-sized fruit diminished as the fruit load increased. Shoot length was not affected by crop load in ‘Eva’ whereas it was reduced in ‘Caricia’. Red skin color (RSC %) had a quadratic response to crop load in ‘Caricia’. On the other hand, the RSC % of ‘Eva’ fruit was adjusted to a negative logarithmic model as an effect of crop load increment. No biennial bearing was observed in either cultivar. This research study suggests that the maximum limit of crop load for both cultivars is 7 fruits cm−2 of TCSA, and the lower limit of crop load was 3 fruits cm−2 of TCSA for ‘Eva’ and 5 fruits cm−2 of TCSA for ‘Caricia’

    Mindfulness in Action: Discovering How U.S. Navy Seals Build Capacity for Mindfulness in High-Reliability Organizations (HROs)

    Get PDF
    This study of US Navy Sea Air and Land (SEAL) commandos contributes to research investigating mindfulness in High-Reliability Organizations (HROs) by identifying the individual and collective influences that allow SEALs to build capacity for mindful behaviors despite the complexity of their missions, the unpredictability of their operating environments, and the danger inherent in their work. Although the HRO literature identifies a number of hallmarks of reliability, less attention is paid to how mindfulness is operationally achieved in situ by individuals on the frontline working in HROs. This study addresses this gap using a multi-phase, multi-method investigation of US Navy SEALs, identifying new links between individual mindfulness attributes (comfort with uncertainty and chaos) and collective mindfulness influences (a positive orientation towards failure) that combine to co-create a phenomenon we call 'mindfulness in action'. Mindfulness in action occurs when HROs achieve an attentive yet flexible focus capable of incorporating multiple—sometimes competing—realities in order to assess alternative solutions and take action in dynamic situations. By providing a more nuanced conceptualization of the links between individual mindfulness attributes and collective mindfulness influences, this paper opens up new avenues of discovery for a wide range of reliability-seeking organizations.This study of US Navy Sea Air and Land (SEAL) commandos contributes to research investigating mindfulness in High-Reliability Organizations (HROs) by identifying the individual and collective influences that allow SEALs to build capacity for mindful behaviors despite the complexity of their missions, the unpredictability of their operating environments, and the danger inherent in their work. Although the HRO literature identifies a number of hallmarks of reliability, less attention is paid to how mindfulness is operationally achieved in situ by individuals on the frontline working in HROs. This study addresses this gap using a multi-phase, multi-method investigation of US Navy SEALs, identifying new links between individual mindfulness attributes (comfort with uncertainty and chaos) and collective mindfulness influences (a positive orientation towards failure) that combine to co-create a phenomenon we call 'mindfulness in action'. Mindfulness in action occurs when HROs achieve an attentive yet flexible focus capable of incorporating multiple—sometimes competing—realities in order to assess alternative solutions and take action in dynamic situations. By providing a more nuanced conceptualization of the links between individual mindfulness attributes and collective mindfulness influences, this paper opens up new avenues of discovery for a wide range of reliability-seeking organizations

    The Magnitude of Global Marine Species Diversity

    Get PDF
    Background: The question of how many marine species exist is important because it provides a metric for how much we do and do not know about life in the oceans. We have compiled the first register of the marine species of the world and used this baseline to estimate how many more species, partitioned among all major eukaryotic groups, may be discovered. Results: There are ∼226,000 eukaryotic marine species described. More species were described in the past decade (∼20,000) than in any previous one. The number of authors describing new species has been increasing at a faster rate than the number of new species described in the past six decades. We report that there are ∼170,000 synonyms, that 58,000–72,000 species are collected but not yet described, and that 482,000–741,000 more species have yet to be sampled. Molecular methods may add tens of thousands of cryptic species. Thus, there may be 0.7–1.0 million marine species. Past rates of description of new species indicate there may be 0.5 ± 0.2 million marine species. On average 37% (median 31%) of species in over 100 recent field studies around the world might be new to science. Conclusions: Currently, between one-third and two-thirds of marine species may be undescribed, and previous estimates of there being well over one million marine species appear highly unlikely. More species than ever before are being described annually by an increasing number of authors. If the current trend continues, most species will be discovered this century
    corecore