9 research outputs found

    Amplification of light pulses with orbital angular momentum (OAM) in nitrogen ions lasing

    Full text link
    Nitrogen ions pumped by intense femtosecond laser pulses give rise to optical amplification in the ultraviolet range. Here, we demonstrated that a seed light pulse carrying orbital angular momentum (OAM) can be significantly amplified in nitrogen plasma excited by a Gaussian femtosecond laser pulse. With the topological charge of +1 and -1, we observed an energy amplification of the seed light pulse by two orders of magnitude, while the amplified pulse carries the same OAM as the incident seed pulse. Moreover, we show that a spatial misalignment of the plasma amplifier with the OAM seed beam leads to an amplified emission of Gaussian mode without OAM, due to the special spatial profile of the OAM seed pulse that presents a donut-shaped intensity distribution. Utilizing this misalignment, we can implement an optical switch that toggles the output signal between Gaussian mode and OAM mode. This work not only certifies the phase transfer from the seed light to the amplified signal, but also highlights the important role of spatial overlap of the donut-shaped seed beam with the gain region of the nitrogen plasma for the achievement of OAM beam amplification.Comment: 10 pages, 7 figure

    Robust and Task-Independent Spatial Profile of the Visual Word Form Activation in Fusiform Cortex

    Get PDF
    Written language represents a special category of visual information. There is strong evidence for the existence of a cortical region in ventral occipitotemporal cortex for processing the visual form of written words. However, due to inconsistent findings obtained with different tasks, the level of specialization and selectivity of this so called visual word form area (VWFA) remains debated. In this study, we examined category selectivity for Chinese characters, a non-alphabetic script, in native Chinese readers. In contrast to traditional approaches of examining response levels in a restricted predefined region of interest (ROI), a detailed distribution of the BOLD signal across the mid-fusiform cortical surface and the spatial patterns of responses to Chinese characters were obtained. Results show that a region tuned for Chinese characters could be consistently found in the lateral part of the left fusiform gyrus in Chinese readers, and this spatial pattern of selectivity for written words was not influenced by top-down tasks such as phonological or semantic modulations. These results provide strong support for the robust spatial coding of category selective response in the mid-fusiform cortex, and demonstrate the utility of the spatial distribution analysis as a more meaningful approach to examine functional magnetic resonance imaging (fMRI) data

    Standoff detection of an electric field by bidirectional nitrogen lasing

    No full text
    International audienceWe report on standoff detection of dc electric field by bidirectional cavity-free lasing emission of neutral nitrogen molecules excited by intense circularly polarized femtosecond laser pulses. We observed that both the backward and forward 337.4 nm coherent lasing emission present a monotonous dependence on the strength of a remotely applied dc field up to ∌ 1 kV/cm field strength. Moreover, this method shows a dependence on the polarity of the external dc field, providing a sensitive method for remote characterization of the electric field amplitude and direction. We attribute the underlying mechanism of lasing signal modulation to the electric field induced electron acceleration and deceleration, which results in a variation of the kinetic energy of the free electrons and a modulation of the population inversion responsible for the nitrogen molecules’ lasing.The polarity-sensitive detection anisotropy is interpreted by the symmetry breaking of the electron motion in the plane perpendicular to the laser propagation due to the injection of a weak second harmonic laser field produced in the quarter-wave plate for a circularly polarized pump laser. Numerical simulations based on the two-dimensional time-dependent Schrödinger equation for electron kinetic energy support our interpretation.This study provides a proof-of-principle method for standoff detection of electric fields based on nitrogen lasing, which can be potentially useful for atmospheric and metrological applications

    Spectral splitting of the lasing emission of nitrogen ions pumped by 800-nm femtosecond laser pulses

    No full text
    International audienceWe report on a spectral splitting effect of the cavity-less lasing emission of nitrogen ions at 391.4 nm pumped by 800-nm femtosecond laser pulses. It was found that with the increase of the nitrogen gas pressure and pump pulse energy, both R and P branches experience spectral splitting. With an external injected seeding pulse, a similar split spectral line is observed for the amplified emission. In contrast, for the fluorescence radiation, no such spectral splitting phenomenon is observed with much more abundant R branch structures. Our theoretical model considers gas ionization by the pump pulse, the competition of excitation of all relevant electronic and vibrational states, and an amplification of the seeding pulse in the plasma with a population inversion. Our simulation reproduces this spectral splitting effect, which is attributed to the gain saturation resulting in the oscillation of the amplitude of the amplified signal

    Spectral splitting of the lasing emission of nitrogen ions pumped by 800-nm femtosecond laser pulses

    No full text
    International audienceWe report on a spectral splitting effect of the cavity-less lasing emission of nitrogen ions at 391.4 nm pumped by 800-nm femtosecond laser pulses. It was found that with the increase of the nitrogen gas pressure and pump pulse energy, both R and P branches experience spectral splitting. With an external injected seeding pulse, a similar split spectral line is observed for the amplified emission. In contrast, for the fluorescence radiation, no such spectral splitting phenomenon is observed with much more abundant R branch structures. Our theoretical model considers gas ionization by the pump pulse, the competition of excitation of all relevant electronic and vibrational states, and an amplification of the seeding pulse in the plasma with a population inversion. Our simulation reproduces this spectral splitting effect, which is attributed to the gain saturation resulting in the oscillation of the amplitude of the amplified signal

    supplementary Material.mp4

    No full text
    This video shows the amplification of an OAM seed pulse in the nitrogen gas plasma and demonstrates that the spatial alignment is crucial for the achievement of OAM beam amplification.</p

    Amplification of light pulses with orbital angular momentum (OAM) in nitrogen ions lasing

    No full text
    Nitrogen ions pumped by intense femtosecond laser pulses give rise to optical amplification in the ultraviolet range. Here, we demonstrated that a seed light pulse carrying orbital angular momentum (OAM) can be significantly amplified in nitrogen plasma excited by a Gaussian femtosecond laser pulse. With the topological charge of ℓ = ±1, we observed an energy amplification of the seed light pulse by two orders of magnitude, while the amplified pulse carries the same OAM as the incident seed pulse. Moreover, we show that a spatial misalignment of the plasma amplifier with the OAM seed beam leads to an amplified emission of Gaussian mode without OAM, due to the special spatial profile of the OAM seed pulse that presents a donut-shaped intensity distribution. Utilizing this misalignment, we can implement an optical switch that toggles the output signal between Gaussian mode and OAM mode. This work not only certifies the phase transfer from the seed light to the amplified signal, but also highlights the important role of spatial overlap of the donut-shaped seed beam with the gain region of the nitrogen plasma for the achievement of OAM beam amplification
    corecore