2,540 research outputs found
Color gradients in the coma of P/Halley
Some important information relevant to the understanding of the gas/dust dynamics near the surface of a comet nucleus concerns knowledge of the grain composition and scattering properties as well as the particle size distribution of dust in the coma. Ground based measurements of light scattered from the dust comae can provide some information about the physical grain properties, in particular about the mean optically dominant grain size. Optical spectra of continua of nine comets presented by Jewitt and Meech, 1986, show that all of the scattered light is reddened with respect to the Sun. There is significant scatter in the amount of reddening seen for different comets. In the near IF regions, the reddening decreases until near 2 to 3 micrometers where the reflectivity is nearly neutral. It is of particular interest to see if there are any observable changes in the grain size distribution during outburst. Although no coma colar changes were observed during the Nov. 1985 outbursts, a color gradient within the coma has been observed in Halley. Radial color gradients in J, H, and K images of Halley as reported by Campins have not been observed by the author
The nucleus of 103P/Hartley 2, target of the EPOXI mission
103P/Hartley 2 was selected as the target comet for the Deep Impact extended
mission, EPOXI, in October 2007. There have been no direct optical observations
of the nucleus of this comet, as it has always been highly active when
previously observed. We aimed to recover the comet near to aphelion, to a)
confirm that it had not broken up and was in the predicted position, b) to
provide astrometry and brightness information for mission planning, and c) to
continue the characterisation of the nucleus. We observed the comet at
heliocentric distances between 5.7 and 5.5 AU, using FORS2 at the VLT, at 4
epochs between May and July 2008. We performed VRI photometry on deep stacked
images to look for activity and measure the absolute magnitude and therefore
estimate the size of the nucleus. We recovered the comet near the expected
position, with a magnitude of m_R = 23.74 \pm 0.06 at the first epoch. The
comet had no visible coma, although comparison of the profile with a stellar
one showed that there was faint activity, or possibly a contribution to the
flux from the dust trail from previous activity. This activity appears to fade
at further epochs, implying that this is a continuation of activity past
aphelion from the previous apparition rather than an early start to activity
before the next perihelion. Our data imply a nucleus radius of \le 1 km for an
assumed 4% albedo; we estimate a ~6% albedo. We measure a colour of (V-R) = 0.
26 \pm 0.09.Comment: 5 pages, 4 figures, accepted for publication in A&
Observational evidence of aging processes in comets
Emphasis was on searching for systematic differences among two groups of comets: periodic comets which spend most of their time in the vicinity of the inner Solar System and the new comets which are believed to be passing through the inner Solar System for the first time. Such differences are expected, but have never been observed, in part because there has never been a systematic observational program aimed at addressing this question. Understanding possible physical and compositional differences between these two groups will lead to a better understanding of the cometary formation conditions in the early Solar System. The employed method studies the activity in the comets as a function of distance by obtaining charge coupled device (CCD) observations of the comets at frequent intervals on both the pre- and post-perihelion legs of their orbits in order to ascertain the distances at the onset and turn-off of activity through comparison with sublimation models
Optically Induced Second Harmonic Generation by Six-wave Mixing: A Novel Probe of Solute Orientational Dynamics
Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition
Photoelectric emission from the alkali metal doped vacuum-ice interface
The photoelectron photoemission spectra and thresholds for low coverages of Li and K adsorbed on water-ice have been measured, compared with photoionization spectra of the gas-phase atoms, and modeled by quantum chemical calculations. For both alkali metals the threshold for photoemission is dramatically decreased and the cross section increased on adsorption to the water-ice surface. Quantum chemical calculations suggest that the initial state is formed by the metal atoms adsorbed into the water-ice surface, forming a state with a delocalized electron distribution. This state is metastable and decays on the hundreds of seconds time scale at 92 K. The decay is markedly faster for Li than for K, probably due to diffusion into the ice film
Photometry of comet 9P/Tempel 1 during the 2004/2005 approach and the Deep Impact module impact
The results of the 9P/Tempel 1 CARA (Cometary Archive for Amateur
Astronomers) observing campaign is presented. The main goal was to perform an
extended survey of the comet as a support to the Deep Impact (DI) Mission. CCD
R, I and narrowband aperture photometries were used to monitor the
quantity. The observed behaviour showed a peak of 310 cm 83 days before
perihelion, but we argue that it could be distorted by the phase effect, too.
The phase effect is roughly estimated around 0.0275 mag/degree, but we had no
chance for direct determination because of the very similar geometry of the
observed apparitions. The log-slope of was around -0.5 between about
180--100 days before the impact but evolved near the steady-state like 0 value
by the impact time. The DI module impact caused an about 60%{} increase in the
value of and a cloud feature in the coma profile which was observed
just after the event. The expansion of the ejecta cloud was consistent with a
fountain model with initial projected velocity of 0.2 km/s and =0.73.
Referring to a 25~000 km radius area centered on the nucleus, the total cross
section of the ejected dust was 8.2/ km 0.06 days after the impact, and
1.2/ km 1.93 days after the impact ( is the dust albedo). 5 days
after the event no signs of the impact were detected nor deviations from the
expected activity referring both to the average pre-impact behaviour and to the
previous apparitions ones.Comment: 25 pages (including cover pages), 9 figures, 1 table, accepted by
Icarus DI Special Issu
- …
