348 research outputs found

    Landscape response to Pleistocene-Holocene precipitation change in the Western Cordillera, Peru: 10Be concentrations in modern sediments and terrace fills

    Get PDF
    The landscape response to climate change is frequently investigated with models because natural experiments on geologic timescales are rare. In Quebrada Veladera, in the western Andes Mountains, the formation of alluvial terraces during periods of high precipitation presents opportunities for such an experiment. We compare drainage-average erosion rates during Pleistocene terrace deposition with Holocene rates, using cosmogenic 10Be samples for seven pairs of quartz sand taken from the trunk and tributaries of Quebrada Veladera and adjacent terraces. Each pair consists of sediment collected from the modern channel and excavated from an adjacent fill terrace. The terrace fill was deposited at ~16 ka and preserved an isotopic record of paleoerosion rates in the Late Pleistocene. Modern sands yield 10Be concentrations between 1.68 × 105 and 2.28 × 105 atoms/g, corresponding to Holocene erosion rates between 43 ± 3 and 58 ± 4 mm/kyr. The 10Be concentrations in terrace sands range from 9.46 × 104 to 3.73 × 105 atoms/g, corresponding to paleoerosion rates from 27 ± 2 to 103 ± 8 mm/kyr. Smaller, upstream tributaries show a substantial decline in erosion rate following the transition from a wet to dry climate, but larger drainage areas show no change. We interpret this trend to indicate that the wetter climate drove landscape dissection, which ceased with the return to dry conditions. As channel heads propagated upslope, erosion accelerated in low-order drainages before higher-order ones. This contrast disappeared when the drainage network ceased to expand; at that point, erosion rates became spatially uniform, consistent with the uniformity of modern hillslope gradients. Key Points Landscape response to climate change evaluated with 10Be erosion rates Wetter climate associated with rapid erosion in smaller, upstream drainages Drier, Holocene climate associated with spatially uniform erosion rates ©2013. American Geophysical Union. All Rights Reserved

    An examination of the need for Afforestation in Northern Ireland.

    Get PDF

    Computational Simulation: Selected Applications In Medicine, Dentistry, And Surgery

    Get PDF
    This article presents the use of computational modelling software (e.g. ANSYS) for the purposes of simulating, evaluating and developing medical and surgical practice. We provide a summary of computational simulation mo delling that has recently been employed through effective collaborations between the medical, mathematical and engineering research communities. Here, particular attention is being paid to the modelling of medical devices as well as providing an overview o f modelling bone, artificial organs and microvascular blood flows in the machine space of a High Performance Computer (HPC)

    Microarterial anastomoses: A parameterised computational study examining the effect of suture position on intravascular blood flow

    Get PDF
    This study investigates the extent to which individual aspects of suture placement influence local haemodynamics within microarterial anastomoses. An attempt to physically quantify flow characteristics of blood past microvascular sutures is made using computational fluid dynamics (CFD) software. Particular focus has been placed on increased shear strain rate (SSR), a known precipitant of intravascular platelet activation and thrombosis. Measurements were taken from micrographs of sutured anastomoses in chicken femoral vessels, with each assessed for bite width, suture angle and suture spacing. Computational geometries were then created to represent the anastomosis. Each suture characteristic was parameterised to allow independent or simultaneous adjustment. Flow rates were obtained from anonymised Doppler ultrasound scans of analogous vessels during preoperative assessment for autologous breast reconstruction. Vessel simulations were performed in 2.5 mm ducts with blood as the working fluid. Vessel walls were non-compliant and a continuous Newtonian flow was applied, in accordance with current literature. Suture bite angle and spacing had significant effects on local haemodynamics, causing notably higher local SSRs, when simulated at extremes of surgical practice. A combined simulation, encompassing subtle changes of each suture parameter simultaneously i.e. representing optimum technique, created a more favourable SSR profile. As such, haemodynamic changes associated with optimum suture placement are unlikely to influence thrombus formation significantly. These findings support adherence to the basic principles of good microsurgical practice

    Qatar Islamic Archaeology and Heritage Project: End of Season Report : 2011-2012

    Get PDF
    International audienc

    Progress Towards a Multi-Modal Capsule Endoscopy Device Featuring Microultrasound Imaging

    Get PDF
    Current clinical standards for endoscopy in the gastrointestinal (GI) tract combine high definition optics and ultrasound imaging to view the lumen superficially and through its thickness. However, these instruments are limited to the length of an endoscope and the only clinically available, autonomous devices able to travel the full length of the GI tract easily offer only video capsule endoscopy (VCE). Our work seeks to overcome this limitation with a device (“Sonopill”) for multimodal capsule endoscopy, providing optical and microultrasound (μUS) imaging and supporting sensors1. μUS transducers have been developed with multiple piezoelectric materials operating across a range of centre frequencies to study viability in the GI tract. Because of the combined constraints of μUS imaging and the low power / heat tolerance of autonomous devices, a hybrid approach has been taken to the transducer design, with separate transmit and receive arrays allowing multiple manufacturing approaches to maximise system efficiency. To explore these approaches fully, prototype devices have been developed with PVDF, high-frequency PZT and PMN-PT composites, and piezoelectric micromachined ultrasonic transducer arrays. Test capsules have been developed using 3D printing to investigate issues including power consumption, heat generation / dissipation, acoustic coupling, signal strength and capsule integrity. Because of the high functional density of the electronics in our proposed system, application specific integrated circuits (ASICs) have been developed to realise the ultrasound transmit and receive circuitry along with white-light and autofluorescence imaging with single-photon avalanche detectors (SPADs). The ultrasound ASIC has been developed and the SPAD electronics and optical subsystem have been validated experimentally. The functionality of various transducer materials has been examined as a function of frequency and ultrasound transducers have been developed to operate at centre frequencies in the range 15 - 50 MHz. Ex vivo testing of porcine tissue has been performed, generating images of interest to the clinical community, demonstrating the viability of the Sonopill concept

    Dating the incision of the Yangtze River gorge at the First Bend using three-nuclide burial ages

    Get PDF
    Incision of the Yangtze River gorge is widely interpreted as evidence for lower crustal flow beneath the southeast margin of the Tibetan Plateau. Previous work focused on the onset of incision, but the duration of incision remains unknown. Here we present cosmogenic nuclide burial ages of sediments collected from caves on the walls of the gorge that show the gorge was incised ~1 km sometime between 18 and 9 Ma. Thereafter, incision slowed substantially. We resolve middle Miocene burial ages by using three nuclides and accounting for in situ muogenic production. This approach explains the absolute concentrations of 10Be, 26Al, and 21Ne, as well as 26Al/10Be and 21Ne/10Be ratios. A declining incision rate challenges existing geodynamic interpretations by suggesting that either (1) surface uplift has ceased immediately south of the plateau margin or (2) gorge incision is not a useful proxy for the timing of surface uplift

    Tapering Analysis of Airways with Bronchiectasis

    Get PDF
    Bronchiectasis is the permanent dilation of airways. Patients with the disease can suffer recurrent exacerbations, reducing their quality of life. The gold standard to diagnose and monitor bronchiectasis is accomplished by inspection of chest computed tomography (CT) scans. A clinician examines the broncho-arterial ratio to determine if an airway is brochiectatic. The visual analysis assumes the blood vessel diameter remains constant, although this assumption is disputed in the literature. We propose a simple measurement of tapering along the airways to diagnose and monitor bronchiectasis. To this end, we constructed a pipeline to measure the cross-sectional area along the airways at contiguous intervals, starting from the carina to the most distal point observable. Using a phantom with calibrated 3D printed structures, the precision and accuracy of our algorithm extends to the sub voxel level. The tapering measurement is robust to bifurcations along the airway and was applied to chest CT images acquired in clinical practice. The result is a statistical difference in tapering rate between airways with bronchiectasis and controls

    Holocene depositional history inferred from single-grain luminescence ages in southern California, North America.

    Get PDF
    Significant sediment flux and deposition in a sedimentary system are influenced by climate changes, tectonics, lithology, and the sedimentary system’s internal dynamics. Identifying the timing of depositional periods from stratigraphic records is a first step to critically evaluating the controls of sediment flux and deposition. Here, we show that ages of single-grain K-feldspar luminescence subpopulations may provide information on the timing of previous major depositional periods. We analyzed 754 K-feldspar single-grains from 17 samples from the surface to ~9 m-depth in a trench located downstream of the Mission Creek catchment. Single-grain luminescence subpopulation ages significantly overlap at least eight times since ~12.0 ka indicating a common depositional history. These depositional periods correspond reasonably well with the wetter climate periods based on hydroclimatic proxies from nearby locations. Our findings imply a first-order climatic control on sediment depositional history in southern California on a millennial timescale

    Hydrogeomorphology of the Hyporheic Zone: Stream Solute and Fine Particle Interactions With a Dynamic Streambed

    Get PDF
    Hyporheic flow in streams has typically been studied separately from geomorphic processes. We investigated interactions between bed mobility and dynamic hyporheic storage of solutes and fine particles in a sand-bed stream before, during, and after a flood. A conservatively transported solute tracer (bromide) and a fine particles tracer (5 μm latex particles), a surrogate for fine particulate organic matter, were co-injected during base flow. The tracers were differentially stored, with fine particles penetrating more shallowly in hyporheic flow and retained more efficiently due to the high rate of particle filtration in bed sediment compared to solute. Tracer injections lasted 3.5 h after which we released a small flood from an upstream dam one hour later. Due to shallower storage in the bed, fine particles were rapidly entrained during the rising limb of the flood hydrograph. Rather than being flushed by the flood, we observed that solutes were stored longer due to expansion of hyporheic flow paths beneath the temporarily enlarged bedforms. Three important timescales determined the fate of solutes and fine particles: (1) flood duration, (2) relaxation time of flood-enlarged bedforms back to base flow dimensions, and (3) resulting adjustments and lag times of hyporheic flow. Recurrent transitions between these timescales explain why we observed a peak accumulation of natural particulate organic matter between 2 and 4 cm deep in the bed, i.e., below the scour layer of mobile bedforms but above the maximum depth of particle filtration in hyporheic flow paths. Thus, physical interactions between bed mobility and hyporheic transport influence how organic matter is stored in the bed and how long it is retained, which affects decomposition rate and metabolism of this southeastern Coastal Plain stream. In summary we found that dynamic interactions between hyporheic flow, bed mobility, and flow variation had strong but differential influences on base flow retention and flood mobilization of solutes and fine particulates. These hydrogeomorphic relationships have implications for microbial respiration of organic matter, carbon and nutrient cycling, and fate of contaminants in streams
    corecore