6,593 research outputs found

    Nuclear alpha-clustering, superdeformation, and molecular resonances

    Full text link
    Nuclear alpha-clustering has been the subject of intense study since the advent of heavy-ion accelerators. Looking back for more than 40 years we are able today to see the connection between quasimolecular resonances in heavy-ion collisions and extremely deformed states in light nuclei. For example superdeformed bands have been recently discovered in light N=Z nuclei such as 36^{36}Ar, 40^{40}Ca, 48^{48}Cr, and 56^{56}Ni by γ\gamma-ray spectroscopy. The search for strongly deformed shapes in N=Z nuclei is also the domain of charged-particle spectroscopy, and our experimental group at IReS Strasbourg has studied a number of these nuclei with the charged particle multidetector array {\sc Icare} at the {\sc Vivitron} Tandem facility in a systematical manner. Recently the search for γ\gamma-decays in 24^{24}Mg has been undertaken in a range of excitation energies where previously nuclear molecular resonances were found in 12^{12}C+12^{12}C collisions. The breakup reaction 24^{24}Mg+12+^{12}C has been investigated at Elab_{lab}(24^{24}Mg) = 130 MeV, an energy which corresponds to the appropriate excitation energy in 24^{24}Mg for which the 12^{12}C+12^{12}C resonance could be related to the breakup resonance. Very exclusive data were collected with the Binary Reaction Spectrometer in coincidence with {\sc Euroball IV} installed at the {\sc Vivitron}.Comment: 10 pages, 4 eps figures included. Invited Talk 10th Nuclear Physics Workshop Marie and Pierre Curie, Kazimierz Dolny Poland, Sep. 24-28, 2003; To be published in International Journal of Modern Physics

    Analytical low-thrust satellite maneuvers for rapid ground target revisit

    Get PDF
    This paper presents an analytical solution for a low-thrust maneuver to reduce the flyover time of a given terrestrial target. The work extends the general solution previously developed by the authors for a 3-phase spiral transfer that results in a change in the relative right ascension of the ascending node and argument of latitude of satellites in a constellation, by varying the orbital period and the J2 effect experienced by each satellite. This work improves the accuracy of the existing method by including the periodic effects of J2 in the analytical solution. Using these improved equations, a calculation of the flyover time of a given latitude can be determined, and the passes for which the target longitude is in view identified. Validation against a numerical orbit propagator shows the analytical method to accurately predict the sub-satellite point of the satellite to within ±1° of longitude after 15 days. A case study is performed showing that the method can successfully be used to reduce the time of flyover of Los Angeles from 14 days to just 1.97 days, with a change of velocity (ΔV) of 63m/s. The full exploration of the solution space shows the problem to be highly complex, such that an increase in the ΔV used for a maneuver will not necessarily reduce the time of flyover, potentially making optimization using a numerical solution challenging. It also shows that very similar flyover times can be achieved with very different ΔV usage. As such, an overview of the solution space is extremely valuable in allowing an informed trade-off between the time of flyover and maneuver ΔV

    HST/STIS Ultraviolet Imaging of Polar Aurora on Ganymede

    Get PDF
    We report new observations of the spectrum of Ganymede in the spectral range 1160 - 1720 A made with the Space Telescope Imaging Spectrograph (STIS) on HST on 1998 October 30. The observations were undertaken to locate the regions of the atomic oxygen emissions at 1304 and 1356 A, previously observed with the GHRS on HST, that Hall et al. (1998) claimed indicated the presence of polar aurorae on Ganymede. The use of the 2" wide STIS slit, slightly wider than the disk diameter of Ganymede, produced objective spectra with images of the two oxygen emissions clearly separated. The OI emissions appear in both hemispheres, at latitudes above 40 degrees, in accordance with recent Galileo magnetometer data that indicate the presence of an intrinsic magnetic field such that Jovian magnetic field lines are linked to the surface of Ganymede only at high latitudes. Both the brightness and relative north-south intensity of the emissions varied considerably over the four contiguous orbits (5.5 hours) of observation, presumably due to the changing Jovian plasma environment at Ganymede. However, the observed longitudinal non-uniformity in the emission brightness at high latitudes, particularly in the southern hemisphere, and the lack of pronounced limb brightening near the poles are difficult to understand with current models. In addition to observed solar HI Lyman-alpha reflected from the disk, extended Lyman-alpha emission resonantly scattered from a hydrogen exosphere is detected out to beyond two Ganymede radii from the limb, and its brightness is consistent with the Galileo UVS measurements of Barth et al. (1997).Comment: 7 pages, 4 figures, accepted for publication in ApJ, June 1, 200

    TEM tomography of pores with application to computational nanoscale flows in nanoporous silicon nitride (NPN)

    Get PDF
    Silicon nanomembrane technologies (NPN, pnc-Si, and others) have been used commercially as electron microscopy (EM) substrates, and as filters with nanometer-resolution size cut-offs. Combined with EM, these materials provide a platform for catching or suspending nanoscale-size structures for analysis. Usefully, the nanomembrane itself can be manufactured to achieve a variety of nanopore topographies. The size, shapes, and surfaces of nanopores will influence transport, fouling, sieving, and electrical behavior. Electron tomography (ET) techniques used to recreate nanoscale-sized structures would provide an excellent way to capture this variation. Therefore, we modified a sample holder to accept our standardized 5.4 mm × 5.4 mm silicon nanomembrane chips and imaged NPN nanomembranes (50–100 nm thick, 10–100 nm nanopore diameters) using transmission electron microscopy (TEM). After imaging and ET reconstruction using a series of freely available tools (ImageJ, TomoJ, SEG3D2, Meshlab), we used COMSOL Multiphysics™ to simulate fluid flow inside a reconstructed nanopore. The results show flow profiles with significantly more complexity than a simple cylindrical model would predict, with regions of stagnation inside the nanopores. We expect that such tomographic reconstructions of ultrathin nanopores will be valuable in elucidating the physics that underlie the many applications of silicon nanomembranes

    The moderating effect of brand orientation on inter-firm market orientation and performance

    Get PDF
    While prior research has shown that market and brand orientation are key contributors to successful business performance, research to date has not fully explored how inter firm collaboration for these two key orientations can enhance business performance. The purpose of the paper is to investigate the relationship between inter-firm market and performance; to test for the moderating role of brand orientation in that relationship. A total of 169 completed pairs of surveys were collected of small and medium enterprises operating internationally in a variety of industries in Switzerland. The results show that inter-firm market and brand orientation are two antecedents of marketing and financial performance. The impact of inter-firm market on marketing and financial performance is significant when the brand orientation is favorable. This study extends previous research by examining the moderating role of brand orientation on inter firm market orientation, which is important, especially for firms wanting to increase their brand reputation by entering into partnerships with other firms. Further research is indicated, to identify the key moderators of the driving force of inter-firm market in relation to business performance and the reason why maintaining a strong brand presence is important in the international marketplace

    Replication and exploratory analysis of 24 candidate risk polymorphisms for neural tube defects.

    Get PDF
    BackgroundNeural tube defects (NTDs), which are among the most common congenital malformations, are influenced by environmental and genetic factors. Low maternal folate is the strongest known contributing factor, making variants in genes in the folate metabolic pathway attractive candidates for NTD risk. Multiple studies have identified nominally significant allelic associations with NTDs. We tested whether associations detected in a large Irish cohort could be replicated in an independent population.MethodsReplication tests of 24 nominally significant NTD associations were performed in racially/ethnically matched populations. Family-based tests of fifteen nominally significant single nucleotide polymorphisms (SNPs) were repeated in a cohort of NTD trios (530 cases and their parents) from the United Kingdom, and case-control tests of nine nominally significant SNPs were repeated in a cohort (190 cases, 941 controls) from New York State (NYS). Secondary hypotheses involved evaluating the latter set of nine SNPs for NTD association using alternate case-control models and NTD groupings in white, African American and Hispanic cohorts from NYS.ResultsOf the 24 SNPs tested for replication, ADA rs452159 and MTR rs10925260 were significantly associated with isolated NTDs. Of the secondary tests performed, ARID1A rs11247593 was associated with NTDs in whites, and ALDH1A2 rs7169289 was associated with isolated NTDs in African Americans.ConclusionsWe report a number of associations between SNP genotypes and neural tube defects. These associations were nominally significant before correction for multiple hypothesis testing. These corrections are highly conservative for association studies of untested hypotheses, and may be too conservative for replication studies. We therefore believe the true effect of these four nominally significant SNPs on NTD risk will be more definitively determined by further study in other populations, and eventual meta-analysis

    Morphologies of z~0.7 AGN host galaxies in CANDELS : no trend of merger incidence with AGN luminosity

    Get PDF
    PS would like to acknowledge funding through grant ASI I/005/11/0. DKoo would like to acknowledge funding through grant NSF AST-0808133. SJ acknowledges financial support from the EC through an ERC grant StG-257720.The processes that trigger active galactic nuclei (AGN) remain poorly understood. While lower luminosity AGN may be triggered by minor disturbances to the host galaxy, stronger disturbances are likely required to trigger luminous AGN. Major wet mergers of galaxies are ideal environments for AGN triggering since they provide large gas supplies and galaxy scale torques. There is however little observational evidence for a strong connection between AGN and major mergers. We analyse the morphological properties of AGN host galaxies as a function of AGN and host galaxy luminosity and compare them to a carefully matched sample of control galaxies. AGN are X-ray selected in the redshift range 0.5 < z < 0.8 and have luminosities 41 ≲ log (LX [erg s−1]) ≲ 44.5. ‘Fake AGN’ are simulated in the control galaxies by adding point sources with the magnitude of the matched AGN. We find that AGN host and control galaxies have comparable asymmetries, Sérsic indices and ellipticities at rest frame ∼950 nm. AGN host galaxies show neither higher average asymmetries nor higher fractions of very disturbed objects. There is no increase in the prevalence of merger signatures with AGN luminosity. At 95 per cent confidence we find that major mergers are responsible for <6 per cent of all AGN in our sample as well as <40 per cent of the highest luminosity AGN (log  (LX [erg s−1]) ∼ 43.5). Major mergers therefore either play only a very minor role in the triggering of AGN in the luminosity range studied or time delays are too long for merger features to remain visible.PostprintPeer reviewe
    • …
    corecore