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Analytical Low-Thrust Satellite Maneuvers for Rapid 
Ground Target Revisit 

Ciara N. McGrath
1
 and Malcolm Macdonald

2
 

University of Strathclyde, Glasgow, United Kingdom, G1 1XJ 

This paper presents an analytical solution for a low-thrust maneuver to reduce the flyover time of a 

given terrestrial target. The work extends the general solution previously developed by the authors for a 

3-phase spiral transfer that results in a change in the relative right ascension of the ascending node and 

argument of latitude of satellites in a constellation, by varying the orbital period and the J2 effect 

experienced by each satellite. This work improves the accuracy of the existing method by including the 

periodic effects of J2 in the analytical solution. Using these improved equations, a calculation of the 

flyover time of a given latitude can be determined, and the passes for which the target longitude is in view 

identified. Validation against a numerical orbit propagator shows the analytical method to accurately 

predict the sub-satellite point of the satellite to within ±1° of longitude after 15 days. A case study is 

performed showing that the method can successfully be used to reduce the time of flyover of Los Angeles 

from 14 days to just 1.97 days, with a change of velocity (ȴV) of 63m/s. The full exploration of the solution 

space shows the problem to be highly complex, such that an increase in the ȴV used for a maneuver will 

not necessarily reduce the time of flyover, potentially making optimization using a numerical solution 

challenging. It also shows that very similar flyover times can be achieved with very different ȴV usage. As 

such, an overview of the solution space is extremely valuable in allowing an informed trade-off between 

the time of flyover and maneuver ȴV. 

 

Nomenclature ܽ = semi-major axis തܽ = mean semi-major axis ܽ଴ = semi-major axis at maneuver start ܽଵ = semi-major axis after first thrusting phase ܽଷ = semi-major axis at maneuver end ୢ௔ୢ௧  = rate of change of semi-major axis ݁ = eccentricity ݅ = inclination ݊ = mean motion ത݊ = anomalistic mean motion ݐ = time ݐ଴ = time at epoch ݐ௧௢௧௔௟ = total time required for the maneuver ݐௗ௢௪௡ = time of downwards passes over the target latitude ݐଵ = time of the first pass of the target latitude ݐଶ = time of the second pass of the target latitude ݐ௣௘௔௞ = time of first pass of the satellite over the maximum viewable latitude ݐ௨௣ = time of upwards passes over the target latitude ݑ = argument of latitude ݑ଴ = argument of latitude at epoch ݑ௧௢௧௔௟ = total change in argument of latitude ୢ௨ୢ௧  = rate of change of argument of latitude ܣ = constant acceleration applied by the propulsion system  
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ଶ = coefficient of the Earth’s gravitational zonal harmonic of the 2ܬ ௌ = acceleration in the direction of satellite motionܨ
nd

 degree ܰ = number of orbit revolutions ܯ଴ = mean anomaly at epoch ܴ௘ = mean Earth radius ܶ = orbit period ௦ܶ௧௔௥௧  = orbit period of first orbit revolution ߜ௦௦௣ = latitude of sub-satellite point ߜ௧௔௥௚௘௧ = latitude of point of interest ߜ௣௘௔௞ = maximum viewable latitude ߠ = true anomaly ୢఏୢ௧  = rate of change of true anomaly ߤ = standard gravitational parameter of Earth ߱ = argument of perigee ߱଴ = argument of perigee at epoch ୢఠୢ௧  = rate of change of argument of perigee ȟ ௧௢௧௔௟ = total change in velocity required for maneuver ߖ௦௦௣ = longitude of sub-satellite point ߖ௧௔௥௚௘௧  = longitude of point of interest ߗ = right ascension of the ascending node ߗ௧௢௧௔௟ = total change in right ascension of the ascending node ߗ଴ = right ascension of the ascending node at epoch ୣߗ୲଴ = right ascension of Greenwich at epoch ୢఆ೐ୢ௧  = angular velocity of Earth ୢఆୢ௧  = rate of change of right ascension of the ascending node 

I. Introduction 

ORE than 100 satellites are currently in orbit performing Earth Observation (EO) missions, critical to 

supporting life on Earth.
 1

 Weather monitoring,
2
 climate monitoring,

3,4
 Earth imaging,

5
 and disaster 

response
6
 are all crucial services which make use of EO satellite data. Many of these applications require 

observations to be made of the entire Earth, utilizing multiple satellites arranged in a constellation. Particularly 

in the cases of weather monitoring, disaster response, and Earth imaging for commercial applications, rapid 

collection and dissemination of data from a given site is desirable. However, satellite orbits must be predefined 

before launch, and often are fixed early in the mission design. With limited on-board propellant available, most 

conventional satellite constellations remain static throughout the mission lifetime and are incapable of 

responding to a change in user needs. Although much work has been done in the area of Operationally 

Responsive Space (ORS), aiming to significantly reduce the time from mission conception to satellite launch 

and operation, current methods propose a timeline on the order of months, rather than weeks or days.
7,8

 As such, 

reconfigurable constellations capable of providing coverage of a given target, as required, would be extremely 

useful, enabling products and services to respond to real-time needs or market demands. This would 

significantly increase the commercial potential of such a system when compared to a static constellation, and 

could allow for unique mission objectives and requirements to be met. 

Guelman and Kogan proposed the use of electric propulsion as a method of satellite reconnaissance (i.e. 

providing overflight of multiple successive ground targets), in 1999.
9
 They determined the problem to be a 

discrete optimization problem and thus used a simulated annealing method to identify the minimum fuel 

trajectory that would satisfy the requirement to pass over a set of ground targets in a given time. Jean and de 

Lafontaine went on to develop an autonomous control law capable of fulfilling such a mission.
10

 Work has also 

been done on optimizing the orbit used to overfly the targets. Abdelkhalik tackles the problem by using a 

genetic algorithm to select a natural orbit which will overfly as many ground targets as possible from a given 

set, without the need for a propulsion system.
11,12

 A special case of the reconnaissance mission is one in which 

rapid revisit of a specific target is required. Kim addresses this by using a genetic algorithm to define a new 

temporary orbit which would minimize the average revisit time of a given target.
13

 Another aspect of the 

problem is the optimal reassignment of each satellite in a constellation. De Weck used an auction algorithm to 

reliably determine the optimal assignment of satellites when reconfiguring a constellation.
14

 His focus is on the 

staged deployment of satellite constellations, but a similar reassignment problem exists in all cases of 

constellation reconfiguration.  

M 
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Although most studies of maneuverable satellite missions have focused on low-thrust trajectories, Zhu 

proposes the use of high-thrust maneuvers based on a Hohmann transfer to achieve flyover of a given ground 

target.
15

 Multiple objectives are considered, including maximizing coverage time of the target and minimizing 

the fuel required for the orbit transfer. Combining these into a fitness function, Zhu uses particle swarm 

optimization and differential evolution to select a satellite from an available set and to optimize the maneuver 

trajectory. However, Zhu notes that an optimal solution cannot be guaranteed. This is a weakness of the 

numerical optimizers that have mainly been used to tackle this problem to date, for both low- and high-thrust 

scenarios, as they do not provide a complete view of the solution space.  

There have been some recent attempts to solve the reconnaissance problem analytically. Zhang’s work 
provides approximate, semi-analytical solutions to the problem using high-thrust propulsion.

16,17
 His method, 

based on Kepler’s equations and considering up to four impulsive maneuvers, allows for the minimum energy 

trajectory to be found. The results are found to be sub-optimal compared with a numerical solver, but Zhang 

highlights that they could provide an initial guess for higher precision models and may be useful in cases where 

fast computational speed is desired. 

For the case of low-thrust propulsion, Co’s work in recent years has developed a control algorithm which 
allows a single satellite to pass over a given target using electric propulsion.

18-20
 Co uses the difference in time 

of flyover between the maneuvering satellite and a non-maneuvering reference satellite as a metric, and can 

solve for this using a single equation. Co’s algorithm propagates the initial orbit for a given time and identifies 
close passes to the target. These are then ordered in terms of the soonest encounter, if the fastest over-flight 

solution is desired, or by order of closest pass if the minimum fuel solution is desired. Discarding those which 

are infeasible, the fastest, or minimum energy, feasible solution can be found. Being based on a straightforward, 

analytical expression, Co’s solution allows for analysis of the possible reach of a maneuver of this type, and the 
impact of the initial orbit parameters on the maneuver efficiency. However, it does not provide a full overview 

of the solution space and instead solves for a single solution, optimizing for either time, fuel, or a cost function 

combining the two. 

The work presented here aims to complement the above research by developing a fully analytical solution 

describing a low-thrust, in-plane satellite manoeuver to reduce the revisit time to a specific target. This is a 

special case of the reconnaissance problem, and could be extended to consider flyover of multiple terrestrial 

targets. This analytical solution is developed based on previous work by the authors, which analytically 

describes the reconfiguration of a satellite constellation.
21,22

 These solutions will provide an overview of the 

entire solution space, enabling mission designers to understand the capabilities and limitations of such a 

maneuver and inform mission design and operation.    

II. Method 

Previous work by the authors has shown that by making use of low-thrust propulsion and exploiting the 

Earth’s natural perturbing forces, it is possible to analytically describe the reconfiguration of a satellite 

constellation, achieving a desired separation of both right ascension of the ascending node (RAAN) and rate of 

change of the argument of latitude (AoL) between satellites.
21

 The technique requires that a satellite raise or 

lower its semi-major axis, creating a difference in the J2 effect experienced in relation to other satellites in the 

constellation. The general solution allows for the orbit altitude to be raised or lowered beyond the target altitude 

in order to achieve a faster plane change maneuver if required, as shown in Fig. 1 (a). This method has been 

successfully used to define a low-cost deployment strategy for satellite constellations.
22

 The deployment 

maneuvers were optimized and showed a significant reduction in cost when compared with traditional launch 

methods, particularly for constellations with a large number of orbital planes. 

This paper presents the use of the same technique to enable faster revisit times of points of interest (POIs) on 

the ground. In this case it is assumed that the satellite must begin and end the maneuver at the same altitude, to 

enable consistent observation of the Earth using the on-board instruments. However, the method could similarly 

be used to finish the maneuver at a different altitude. It is also assumed that the initial maneuver phase will 

lower the satellite altitude, as previous work found this to be the most efficient maneuver style, but the 

alternative of initially increasing the satellite altitude could also be considered.
21

 The chosen maneuver style is 

illustrated in Fig. 1 (b). 
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A. Analytical description of maneuvers 

The Gauss version of the Lagrange planetary equations have been used to derive analytical expressions 

describing the total change in RAAN and AoL achievable using this style of maneuver, considering the effects 

of Earth oblateness up to the order of J2. Only circular orbits are considered and atmospheric drag, solar 

radiation pressure, and third body perturbations are not included. In order to simplify the expressions, the 

equations previously derived discounted the change in argument of perigee and mean anomaly, as well as the 

periodic change in semi-major axis, caused by the Earth’s oblateness. Although this was acceptable in previous 
work where the focus was on separation of the satellites through a desired RAAN, significant errors arise in the 

AoL with this simplification, on the order of >1° per day. To ensure that the ground track is sufficiently accurate 

for analysis of flyover times of POIs, it is necessary to include these effects. 

 

1. Analytical expression for change in AoL using anomalistic mean motion and average semi-major axis 

 Considering the effect of the oblate Earth, the change in AoL is given as 

 

ݐ ݑ   ൌ ݐ ߠ  ൅ ݐ߱    (1) 

 

where the rate of change of true anomaly is given by  

 

ݐ ߠ   ൌ ത݊ ൌ ݊ ቆ͵ʹ ሺͳ െ ݁ଶሻିଷ ଶΤ ଶܬ ቆͳ െ ͵   ଶሺ݅ሻʹ ቇ ൬ܴ௘ܽത ൰ଶ ൅ ͳቇ (2) 

 
and the rate of change of argument of perigee is given by 

 

ݐ߱    ൌ ത݊ ͵ʹ ଶܬ ቆʹ െ ͷ   ଶሺ݅ሻʹ ቇ ൬ܴ௘ܽത ൰ଶ ሺͳ െ ݁ଶሻିଶ . (3) 

 

Here, the unperturbed mean motion ݊ is defined as 

 

 ݊ ൌ ට  തଷ (4)ߤܽ

 

and the average semi-major axis, accounting for the periodic oscillations caused by the oblate Earth, തܽ,
17,23,24

 is 

given by   

 

 തܽ ൌ ܽ଴ െ ଶܴ௘ଶʹܽ଴ܬ͵    ଶሺ݅ሻ    ൫ʹሺܯ଴ ൅ ߱଴ሻ൯ .  (5) 

(a)            (b) 

 

Figure 1. (a) General 3-Phase reconfiguration maneuver and (b) 3-Phase maneuver returning to initial 

altitude as used herein. Initial orbit (ܽ଴), intermediate orbit (ܽଵ) and final orbit (ܽଷ) are marked by dashed lines.  
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Knowing that  

 

଴ܯ  ൅ ߱଴ ൌ  ଴ (6)ݑ

 

and making the assumption that each maneuver phase starts at a known semi-major axis ܽ଴ with ݑ଴ ൌ Ͳ, 

simplifies the equations further, allowing Eq. (1) to be integrated over the drift phase for the case where 

eccentricity ݁ ൌ Ͳ and the semi-major axis remains constant. This gives an analytical expression for ݑ ൌ ݂ሺݐሻ. 

Considering the anomalistic mean motion, the equation for the rate of change of semi-major axis as a 

function of time is  

 

ݐܽ    ൌ ௌത݊ܨʹ  (7) 

 

where ܨௌ is the acceleration in the direction of satellite motion. This cannot be easily integrated when using the 

mean semi-major axis, and so the standard semi-major axis is used here as an approximation. Assuming that for 

electric propulsion the change in mass of the satellite is minimal, the thrust applied can be assumed to be of 

constant acceleration magnitude and is represented by ܣ, where a positive value corresponds to acceleration in 

the direction of satellite motion, and a negative value corresponds to acceleration in the opposite direction. This 

gives   

 

ݐܽ    ൌ ܣʹ
ට ଷߤܽ ൮͵ܬଶܴ௘ଶ ൬ͳ െ ͵   ଶሺ݅ሻʹ ൰ʹܽଶ ൅ ͳ൲ 

(8) 

 

for circular orbits with only in-plane thrust. The use of the standard semi-major axis rather than the average 

value introduces negligible errors when compared with a numerical simulation, and allows for a fully analytical 

expression to be used. Integrating this over the maneuver phases, an expression is derived for  ݐ ൌ ݂ሺܽሻ. Using 

this, an equation for the rate of change of AoL throughout the maneuver phase can be calculated as a function of 

the semi-major axis with  

 

ܽ ݑ   ൌ ݐ ݑ   (9) . ܽ ݐ 

 

Using Eq. (1) and Eq. (8), and thereby integrating Eq. (9) over the maneuver phases produces an expression for ݑ ൌ ݂ሺܽሻ. 

Combining the derived equations to account for an initial spiral thrust phase, a coast phase and a second 

thrust phase, and knowing that the intermediate semi-major axis can be calculated as a function of the total 

change in velocity, ȟ ௧௢௧௔௟ , with 

 

 ܽଵ ൌ Ͷܽ଴ܽߤ଴ ൬ʹට ଴ߤܽ ൅ ට ଷߤܽ ൅ ȟ ௧௢௧௔௟൰ ൬ට ଷߤܽ ൅ ȟ ௧௢௧௔௟൰ ൅  ߤ
(10) 

 

a single equation can be derived for  ݑ௧௢௧௔௟ ൌ ݂ሺݐ௧௢௧௔௟ ǡ ȟ ௧ܸ௢௧௔௟ሻ . 

 

2. Analytical expression for change in RAAN using anomalistic mean motion and average semi-major axis 

Similar to the equations for AoL, the expressions for the change in RAAN can be improved using the 

anomalistic mean motion and the mean semi-major axis. For the drift phase, assuming a circular orbit and a 

constant semi-major axis, the rate of change of RAAN can be expressed as  

 

ݐ ߗ   ൌ െ͵ܬଶ തܴ݊௘ଶ    ሺ݅ሻʹ തܽଶ  . (11) 

 

Integrating this over the drift phase gives an equation for ߗ ൌ ݂ሺݐሻ. 
Making use of Eq. (8) and Eq. (11), an equation describing the rate of change of RAAN during the maneuver 

phases as a function of the changing semi-major axis can be defined as  
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ܽ ߗ   ൌ ݐ ߗ   (12) . ܽ ݐ 

 

Integrating this over the maneuver gives an expression for ߗ ൌ ݂ሺܽሻ and, as in the case of the AoL, combining 

the derived equations provides a single analytical expression giving ߗ௧௢௧௔௟ ൌ ݂ሺݐ௧௢௧௔௟ ǡ ȟ ௧ܸ௢௧௔௟ሻ. 

B. Relating the change in RAAN and AoL to changes in latitude and longitude 

Using the equations for change in AoL and RAAN derived in section II.A, it is possible to analytically 

describe the position of the satellite post-maneuver in terms of the orbital elements. However, in order to target 

a specific POI on the ground, it is necessary to link these changes in orbital elements to changes in the ground 

track. 

From spherical geometry the latitude of the sub-satellite point (SSP) can be calculated from the orbital 

elements using 

 

௦௦௣ߜ  ൌ    ିଵሺ   ሺ݅ሻ    ሺݑ୲୭୲ୟ୪ሻሻ (13) 

 

and the longitude of the SSP can be calculated by 

 

௦௦௣ߖ  ൌ    ିଵ ቆ   ሺ݅ሻ    ሺݑ୲୭୲ୟ୪ሻ   ሺݑ୲୭୲ୟ୪ሻ ቇ െ ݐ ௘ߗ  ௧௢௧௔௟ݐ ൅ ୲୭୲ୟ୪ߗ ൅ ଴ߗ െ  ୲଴ (14)ୣߗ

 

where ୣߗ୲଴ is the right ascension of Greenwich at epoch and 
ୢఆ೐ୢ௧  is the angular rotation rate of the Earth.

5,24
 Note 

that it is necessary to include the inverse tangent function in this form to allow for the quadrant of the angle to 

be correctly determined. Combining Eq. (13) and Eq. (14) with those derived in section II.A, gives expressions 

for ߜ௦௦௣ ൌ ݂ሺݐ௧௢௧௔௟ ǡ ȟ ௧ܸ௢௧௔௟ሻ and ߖ௦௦௣ ൌ ݂ሺݐ௧௢௧௔௟ ǡ ȟ ௧ܸ௢௧௔௟ሻ. 

 

III. Analysis 

A. Overview of the solution space 

The orbit of the International Space Station (ISS) is selected for this analysis. These orbit parameters are laid 

out in Table 2. The acceleration of the electric propulsion system ܣ given here is consistent with that used by Co 

in his previous work.
18-20

 Table 1 defines the standard orbital parameters used for the analysis. 

The ground target selected for revisit is Los Angeles, California. Earthquakes in Los Angeles are common 

occurrences, but while most are relatively small, a large magnitude earthquake could cause significant damage 

and even loss of life. In the aftermath of such an event, rapidly available satellite data would be a vital asset for 

response teams on the ground, and a satellite capable of targeting the region a number of times in short 

succession could be extremely valuable. 

   

 

 

 

Table 1. Orbital Constants. 

 

Parameter Symbol Value Units 

Gravitational Parameter µ 3.986E14 m
3
/s

2
 

Radius of Earth Re 6.371E3 km 

J2 Parameter J2 1.0827E-3 - 

Angular velocity of Earth ߱௘ 7.2921E-5 rad/s 
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Plotting the expressions for the latitude and longitude of the sub-satellite point as a function of maneuver 

time and ȟ ௧ܸ௢௧௔௟, gives the surfaces shown in Fig. 2 and Fig. 3 respectively. It is clear from these graphs that it 

is possible to co-ordinate a flyover of any latitude for which െ݅ ൏ ୲ୟ୰୥ୣ୲ߜ ൏ ݅, and for all longitudes, given the 

correct combination of ȟ ௧ܸ௢௧௔௟  and ݐ௧௢௧௔௟. However the solution space is extremely complex. 

Providing a value for ȟ ௧௢௧௔௟  allows the latitude and longitude to be plotted as a function of time only. 

Figure 4 (a) and (b) show this for the case where ȟ ௧௢௧௔௟ ൌ ͳͲͲm/s. 

 

 

 

 
 

Table 2. Mission Parameters. 

 

Parameter Symbol Value Units 

Propulsion acceleration 0.001± ܣ m/s
2 

Inclination i 51.6431 deg 

Initial semi-major axis ܽ଴ 6773 km 

Final semi-major axis ܽଷ 6773 km 

Initial AoL ݑ଴ 0 rad 

Initial RAAN ߗ଴ 0 rad 

Latitude of POI ߜ୲ୟ୰୥ୣ୲ 34.0522 deg 

Longitude of POI ߖ୲ୟ୰୥ୣ୲ -118.2437 deg 

Epoch - 01 Jan 1990 00:00:00.0000
 

- 

Right ascension of Greenwich at epoch ୣߗ୲଴ 100.38641 deg 

 

 
 

Figure 2. Latitude in radians plotted for 10 days as a function of ઢ࢒ࢇ࢚࢕࢚ࢂ and maneuver time. 
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B. Solving for flyover time of a given target 

The expression derived in section II.B above for ߖ௦௦௣ ൌ ݂ሺݐ௧௢௧௔௟ ǡ ߂ ௧ܸ௢௧௔௟ሻ cannot explicitely be solved for ݐ௧௢௧௔௟ or ȟ ௧௢௧௔௟ as the equation is implicit in both. The expression for ߜ௦௦௣ ൌ ݂ሺݐ௧௢௧௔௟ ǡ ߂ ௧ܸ௢௧௔௟ሻ can be solved for ݐ௧௢௧௔௟, but due to the nature of the trigonometric functions only the solution for the first pass of a given latitude 

can be found. However, it can be seen in Fig. 4 (a) that for a given ȟ ௧௢௧௔௟  value, the time of flyover of any 

latitude is periodic. This is because the analytical method used to describe the maneuver creates an artificially 

longer first orbit period to account for the effect of the maneuver. All following orbit periods are then constant 

and are equivalent to the orbit period at the drift altitude (ܽଵ). 

In order to find the times at which the satellite will pass over the POI, it is first necessary to find all the times 

at which the satellite passes the target latitude. Solving for the corresponding longitude at each of these times 

then allows those passes which are over the POI to be identified. This needs to be done for both the upwards and 

downwards passes of the target latitude.  

To find the period of the first lengthier orbit period, the equation for ݑ௧௢௧௔௟ ൌ ݂ሺݐ௧௢௧௔௟ሻ is rearranged to solve 

for ௦ܶ௧௔௥௧ , when ݑ௧௢௧௔௟ ൌ ʹɎ. If ȟ ௧௢௧௔௟ ൌ Ͳ then this will just be the standard orbit period. To determine the 

periods of the following revolutions, the time required for two revolutions, i.e. ݑ௧௢௧௔௟ ൌ ͶɎ, is calculated and the 

time of the first period subtracted. 

 
Figure 3. Longitude in radians plotted for 10 days as a function of ઢ࢒ࢇ࢚࢕࢚ࢂ and maneuver time 

 

 

  
(a)        (b) 

 

Figure 4. (a) Latitude and (b) longitude in degrees plotted for 1 day, for a maneuver ઢ࢒ࢇ࢚࢕࢚ࢂ of 100m/s. 
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The time of the first pass over the target latitude can be simply calculated by ݐଵ ൌ ݂ሺߜ௧௔௥௚௘௧ሻ. Assuming this 

first pass is an upwards pass, a general expression for the time at which all upwards passes of the latitude of 

interest will occur can then be written as 

 

௨௣ݐ  ൌ ܰܶ ൅ ௦ܶ௧௔௥௧ (15) 

 

where ܰ א Ժ and expresses the number of orbit revolutions passed. An expression for the downwards passes can 

then be written as 

 

ௗ௢௪௡ݐ  ൌ ܰܶ ൅ ௦ܶ௧௔௥௧ െ ଵݐ ൅  ଶ (16)ݐ

 

 where  

 

ଶݐ  ൌ ሺݐ௣௘௔௞ െ ଵሻݐ ൅  ௣௘௔௞ (17)ݐ

 

and ݐ௣௘௔௞ corresponds to the time at which the satellite passes the highest possible latitude (i.e. ߜ௣௘௔௞ ൌ ݅). 
If the first pass is a downwards pass then the following expressions should be used 

 

௨௣ݐ  ൌ ௦ܶ௧௔௥௧ െ ሺݐଶ െ ଵሻݐ ൅ ܰܶ (18) 

 

ௗ௢௪௡ݐ  ൌ ܰܶ ൅ ௦ܶ௧௔௥௧ . (19) 

 

 

IV. Validation 

Validation of the analytical method described in section III was done against a numerical simulator which 

propagates the position of the spacecraft using a set of modified equinoctial elements,
25

 using an explicit 

variable step size Runge Kutta (4,5) formula, the Dormand-Prince pair.
26

 This numerical simulation includes 

only perturbations due to Earth oblateness to the order of J2. The acceleration control law applies a constant 

acceleration of െܣ to lower the satellite altitude for a duration of  
୼୚೟೚೟ೌ೗ଶȁ஺ȁ  , and then a constant acceleration of ܣ 

for a duration of 
୼୚೟೚೟ೌ೗ଶȁ஺ȁ  to return the satellite to the initial altitude after the drift period. The results of the 

analytical method were used to define the thrusting time and drift time of the maneuver performed using the 

numerical simulator. 

A. Validation of the method for a non-maneuvering satellite 

1. Analytical Method 

Considering a non-maneuvering satellite, starting with the initial conditions laid out in Table 1 and Table 2, 

the analytical method described in section III.B can be used to plot each satellite pass over the target latitude, 

and the corresponding longitude. Figure 5 shows this for the first 100 upwards and downwards passes. The grey 

horizontal line indicates the target longitude. Figure 6 shows for the first 300 upwards and downwards passes, 

the distance between the sub-satellite point and the point of interest as calculated using the haversine formula.
5
 

The red line indicates the distance below which the point of interest is visible to the satellite. This is calculated 

based on the satellite swath width, which in this case is taken as 184km. This corresponds to ± 1° of the target 

longitude at this latitude. 

In Fig. 6 an upwards pass over Los Angeles after 2 revolutions is visible, marked with the letter ‘A’. ‘B’ 
marks a downwards pass after 22 revolutions, which corresponds to 1.43 days from epoch. Pass ‘C’ occurs on 
revolution 237 at 15.21 days from epoch. 
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2. Numerical Simulation 

Using the numerical simulator, the satellite orbit is propagated for 15.21 days, and the latitude and 

longitude of the sub-satellite point is calculated at all time-steps. Figure 7 shows the ground track produced in 

this manner. The blue dot indicates the satellite position at the beginning of the simulation and the green dot 

shows the position of the satellite over Los Angeles at the end of the simulation. Figure 8 shows the altitude of 

the satellite throughout the simulation showing that it varies very little over the 15 day simulation. Figure 9 

 
 

Figure 5. The longitude of the SSP for the first 100 passes over the target latitude with a non-maneuvering 

satellite. Blue dots mark an upwards pass and orange dots mark a downwards pass. The horizontal grey line 

indicates the target longitide. 

 
 

Figure 6. The distance from the SSP to the POI, plotted for the first 300 revolutions for a non-

maneuvering satellite. Blue dots mark an upwards pass and red dots mark a downwards pass. The horizontal 

red line indicates the distance below which the POI will be visible. A, B and C mark the first, second and third 

passes for which the POI is visible.  
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shows the RAAN and AoL of the satellite throughout the simulation. Figure 10 shows the distance of the sub-

satellite point from the target POI as calculated using the haversine formula at each time step of the numerical 

simulation. The red line indicates the distance below which the POI will be visible to the satellite. The first two 

peaks correspond to passes A and B predicted by the analytical method, and the third peak at 15.21 days 

corresponds to pass C. It can be seen that, as predicted by the analytical method, there is no other pass during 

which Los Angeles will be in view for this given swath, even though it may pass closely at times. For all three 

of these passes the latitude and longitude of the sub-satellite point calculated using the analytical method 

matches the numerical simulation to within ±1°. 

 

  

 

 
 

 

 
Figure 7. Ground track produced by numerical simulator for the case of a non-maneuvering satellite. The 

blue dot marks the position of the satellite at the beginning of the simulation. The green dot marks the position of 

the satellite at the end of the simulation. 

 
Figure 8. Altitude of the non-maneuvering satellite as calculated by the numerical simulation.  
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B. Validation of the method for a maneuvering satellite 
1. Analytical Method 

The analytical method described above can now be used to attempt to reduce the time of successive 

overflights of Los Angeles. As identified in section IV.A, between passes ‘B’ and ‘C’, there is a 14 day gap 
during which Los Angeles will not be in view of the satellite. Taking the position of the satellite at pass B as the 

starting point, a maneuver in which the satellite lowers its altitude, drifts for a time, and then returns to its initial 

altitude can be analytically described for a given ȟ ௧௢௧௔௟ . For this validation case, 100m/s ȟ ௧௢௧௔௟  is used. 

Although the times for the two thrusting phases are fixed as functions of the maneuver ȟ ௧௢௧௔௟ , the drift time can 

 
Figure 9. RAAN and AoL of the non-maneuvering satellite as calculated by the numerical simulation. 

Figure 10. Distance from the SSP to the POI as measured along the surface of the Earth, calculated by the 

numerical simulation for the non-maneuvering satellite. The red line indicates the distance at which the POI 

will be in view of the satellite, assuming a swath width of 184km. The points marked A, B and C indicate the 

times at which the POI is in view and correspond to the passes indicated in Fig. 6.  
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be varied to ensure a pass over the target location at the end of the maneuver. Figure 11 shows the longitude of 

all passes which would finish over the target latitude, plotted against the number of revolutions for the first 100 

possible upwards and downwards passes of the target latitude. Again, the grey horizontal line indicates the 

target longitude. 

Figure 12 shows for the first 300 possible upwards and downwards passes, the distance between the SSP and 

the POI. The red line again indicates the point at which the POI becomes visible to the satellite. Looking at Fig. 

12 the first possible pass over Los Angeles is an upwards pass after 41 revolutions, marked ‘A+’. The time of 

this pass is 2.63 days from the start of the maneuver, shortening the flyover time of Los Angeles by more than 

11 days, compared with the case where no maneuver is performed. 

 

 
 

 

 
 

Figure 11. The longitude of the SSP for the first possible 100 passes over the target latitude with a 

maneuvering satellite. Blue dots mark an upwards pass and orange dots mark a downwards pass. The 

horizontal grey line indicates the target longitide. 

 

 
 

Figure 12. The distance from the SSP to the POI, plotted for the first 300 possible flyovers of the target 

latitude for a maneuvering satellite. Blue dots mark an upwards pass and red dots mark a downwards pass. 

The horizontal red line indicates the distance below which the POI will be visible. A+ marks the first possible 

pass over the POI.  
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2. Numerical Simulation 

Using the numerical simulator, the satellite orbit is propagated from epoch in order to validate the scenario 

proposed by the analytical method. In this case the initial orbit is propagated forward for 1.43 days to pass ‘B’, 
at which point a constant acceleration is applied to lower the altitude of the satellite for 

୼୚೟೚೟ೌ೗ଶȁ஺ȁ  seconds, 

corresponding to 0.58 days. The satellite orbit is then propagated for 1.48 days at the lower altitude, as 

calculated from the analytical maneuver, before applying a constant acceleration again for 0.58 days to return to 

the initial orbit altitude. 

Figure 13 shows the ground track produced by the numerical propagator for this scenario. The blue dot 

shows the satellite position at the beginning of the simulation and the green dot shows the position of the 

satellite over Los Angeles at the end of the simulation. Compared to Fig. 7 which shows the ground track for a 

non-maneuvering satellite, Fig. 13 shows much fewer orbit revolutions, because the target is reached in a 

significantly shorter time. Figure 14 shows the altitude of the satellite throughout the simulation confirming that 

the thrust control law applied to the numerical simulation matches the maneuver defined by the analytical 

method. The analytical method predicts the altitude lowered to 314 km by the end of the first thrusting period, 

which matches the maneuver produced by the numerical simulator closely. Figure 15 shows the change in 

RAAN and AoL of the satellite throughout the simulation. From this it is clear that lowering the altitude has a 

limited effect on the RAAN over such a short time period, however on closer inspection it can be seen that there 

is a marked change to the rate of change of AoL post-maneuver, and it is this along track adjustment in 

positioning that allows the ground target to be passed over in a shorter time than would otherwise be possible. 

Figure 16 shows the distance of the satellite sub-satellite point from the target POI calculated using the 

haversine formula at each time step. Again, the red line indicates the distance at which the POI will be visible to 

the satellite. The first two peaks correspond to passes ‘A’ and ‘B’, before the maneuver begins. The third peak 

corresponds to pass ‘A+’ at the end of the maneuver. Again, even with the inclusion of the maneuver, the 

latitude and longitude of the sub-satellite point calculated using the analytical method match the numerical 

simulation to within ±1°. 

 

 

 
 

 
 

Figure 13. Ground track produced by numerical simulator for the case of a maneuvering satellite. The 

blue dot marks the position of the satellite at the beginning of the simulation. The green dot marks the position of 

the satellite at the end of the simulation. 
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Figure 14. Altitude of the maneuvering satellite as calculated by the numerical simulation.  

 

 

 
Figure 15. RAAN and AoL of the maneuvering satellite as calculated by the numerical simulation. 
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V. Case Study: Rapid Return Mission to Los Angeles 

A case study is performed considering a satellite on the same orbit as the ISS which requires a rapid revisit 

of Los Angeles. As shown in section IV, if no maneuvers are performed there is a 14 day gap between flyovers 

of Los Angeles at passes ‘B’ and ‘C’. It has already been shown that a maneuver requiring a total ȟ ௧௢௧௔௟  of 

100m/s can reduce the time between flyovers to just 2.63 days. The same scenario is investigated here for a 

range of ȟ ௧௢௧௔௟  values from 0m/s to 200m/s in steps of 1m/s. Figure 17 shows the shortest possible time in 

which a pass can be made over Los Angeles using this method, for each ȟ ௧௢௧௔௟  value. Time here is measured 

from the beginning of the maneuver, that is, from pass ‘B’. The red line indicates the limit of what is physically 

achievable with the propulsion system. As an assumption of continuous thrust is made, any solutions which fall 

below this red line require more time to achieve the required thrust than is allotted for the maneuver. 

It is clear from these graphs that the solution set is non-continuous and does not follow an obvious pattern. 

Increasing the ȟ ௧௢௧௔௟  used for the maneuver will not necessarily give a faster flyover time of the target. 

Analysis of the results show that the minimum achievable flyover time for a ȟ ௧௢௧௔௟ ൏ ʹͲͲm/s is 1.97 days, or 

47.19 hours, achieved with a ȟ ௧௢௧௔௟  of 63m/s. However, it is of note that a very similar time of flyover can be 

achieved using a lower ȟ ௧௢௧௔௟ . For example, a flyover time of 47.24 hours is achievable with 55m/s ȟ ௧௢௧௔௟ , 
and with 43m/s ȟ ௧௢௧௔௟  a flyover time of 47.32 hours is possible. This is obvious from the solutions shown in 

Fig. 17, however as the solution space is discontinuous such insights may be difficult to gain through numerical 

methods alone. 

 

 
Figure 16. Distance from the SSP to the POI as measured along the surface of the Earth, calculated by the 

numerical simulation for the maneuvering satellite. The red line indicates the distance at which the POI will 

be in view of the satellite, assuming a swath width of 184km. The points marked A, B and A+ indicate the times 

at which the POI is in view and correspond to the passes indicated in Fig. 6 and Fig. 12. 
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VI. Conclusion 

The analytical method presented here was found to predict the time of flyover of a ground target for a 

maneuvering or non-maneuvering satellite with sufficient accuracy when compared with a numerical simulation, 

in spite of its simplifications. This analytical solution can be used to gain an insight into what is shown to be an 

extremely complex solution space. Such an overview of the solution space allows a greater understanding of the 

available maneuver options, which could aid in the decision making process of satellite operators or mission 

designers. The analytical method is inherently fast to run, and thus numerous possible options can be rapidly 

assessed. This allows a number of alternate possibilities to be assessed and compared and could be used, for 

example, to select the best possible satellite from a constellation to perform a maneuver, or to determine the 

most viable targets for overflight by a given satellite.  The overview of the solution space can be used to inform 

trade-offs based on the possible flyover times and the ȟ ௧௢௧௔௟  available by showing a range of possible 

solutions. It can also be used to identify possible times of flyover, allowing for the illumination conditions of the 

site to be considered in the trade-off.  
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