26 research outputs found

    Influenza nucleoprotein delivered with aluminium salts protects mice from an influenza virus that expresses an altered nucleoprotein sequence

    Get PDF
    Influenza virus poses a difficult challenge for protective immunity. This virus is adept at altering its surface proteins, the proteins that are the targets of neutralizing antibody. Consequently, each year a new vaccine must be developed to combat the current recirculating strains. A universal influenza vaccine that primes specific memory cells that recognise conserved parts of the virus could prove to be effective against both annual influenza variants and newly emergent potentially pandemic strains. Such a vaccine will have to contain a safe and effective adjuvant that can be used in individuals of all ages. We examine protection from viral challenge in mice vaccinated with the nucleoprotein from the PR8 strain of influenza A, a protein that is highly conserved across viral subtypes. Vaccination with nucleoprotein delivered with a universally used and safe adjuvant, composed of insoluble aluminium salts, provides protection against viruses that either express the same or an altered version of nucleoprotein. This protection correlated with the presence of nucleoprotein specific CD8 T cells in the lungs of infected animals at early time points after infection. In contrast, immunization with NP delivered with alum and the detoxified LPS adjuvant, monophosphoryl lipid A, provided some protection to the homologous viral strain but no protection against infection by influenza expressing a variant nucleoprotein. Together, these data point towards a vaccine solution for all influenza A subtypes

    Seasonal Influenza Vaccine and Protection against Pandemic (H1N1) 2009-Associated Illness among US Military Personnel

    Get PDF
    INTRODUCTION: A novel A/H1N1 virus is the cause of the present influenza pandemic; vaccination is a key countermeasure, however, few data assessing prior seasonal vaccine effectiveness (VE) against the pandemic strain of H1N1 (pH1N1) virus are available. MATERIALS AND METHODS: Surveillance of influenza-related medical encounter data of active duty military service members stationed in the United States during the period of April-October 2009 with comparison of pH1N1-confirmed cases and location and date-matched controls. Crude odds ratios (OR) and VE estimates for immunized versus non-immunized were calculated as well as adjusted OR (AOR) controlling for sex, age group, and history of prior influenza vaccination. Separate stratified VE analyses by vaccine type (trivalent inactivated [TIV] or live attenuated [LAIV]), age groups and hospitalization status were also performed. For the period of April 20 to October 15, 2009, a total of 1,205 cases of pH1N1-confirmed cases were reported, 966 (80%) among males and over one-half (58%) under 25 years of age. Overall VE for service members was found to be 45% (95% CI, 33 to 55%). Immunization with prior season's TIV (VE = 44%, 95% CI, 32 to 54%) as well as LAIV (VE = 24%, 95% CI, 6 to 38%) were both found to be associated with protection. Of significance, VE against a severe disease outcome was higher (VE = 62%, 95% CI, 14 to 84%) than against milder outcomes (VE = 42%, 95% CI, 29 to 53%). CONCLUSION: A moderate association with protection against clinically apparent, laboratory-confirmed Pandemic (H1N1) 2009-associated illness was found for immunization with either TIV or LAIV 2008-09 seasonal influenza vaccines. This association with protection was found to be especially apparent for severe disease as compared to milder outcome, as well as in the youngest and older populations. Prior vaccination with seasonal influenza vaccines in 2004-08 was also independently associated with protection

    Cellular Immune Responses of Seniors to Influenza Vaccines

    No full text
    Cellular immunity is important for protection against the serious complications of influenza in older adults. As it is unclear if newer influenza vaccines elicit greater cellular responses than standard vaccines, we compared responses to two standard and two newer licensed trivalent inactivated vaccines (TIVs) in a randomized trial in older adults. Non-frail adults ≥65 years old were randomly assigned to receive standard subunit, MF59-adjuvanted subunit, standard split-virus or intradermal split-virus TIV. Peripheral blood mononuclear cells (PBMC) harvested pre- and 3-weeks post-vaccination were stimulated with live A/H3N2 virus. PBMC supernatants were tested for interleukin 10 (IL-10) and interferon gamma (IFN-γ), and lysates for granzyme B (GrB). Flow cytometry identified CD4+ and CD8+ T- cells expressing intracellular IL-2, IL-10, IFN-γ, GrB, or perforin. Differences following immunization were assessed for paired subjects and among groups. 120 seniors participated, 29-31 per group, which were well matched demographically. Virus-stimulated PBMCs were GrB-rich before and after vaccination, with minimal increases evident. Immunization did not increase secretion of IFN-γ or IL-10. However, cytolytic effector T-cells (CD8+GrB+perforin+) increased in proportion post-vaccination in all groups (significantly in 2), to similar mean values across groups. CD4+GrB+perforin+ T-cells also increased slightly after each vaccine, to similar mean values per group. Vaccinations did not increase the low baseline percentages of IFN-γ+, IL-2+ or IL-10+ CD4+ or CD8+ T-cells. In conclusion, participants had pre-existing cellular immunity to H3N2 virus. All four vaccines boosted cellular responses to a similar but limited extent, including cytolytic effector CD8+ T-cells associated with clinical protection against influenza.Medicine, Faculty ofNon UBCReviewedFacultyResearche

    Cellular immune responses of older adults to four influenza vaccines: Results of a randomized, controlled comparison

    No full text
    Cellular immunity is important for protection against the serious complications of influenza in older adults. As it is unclear if newer influenza vaccines elicit greater cellular responses than standard vaccines, we compared responses to 2 standard and 2 newer licensed trivalent inactivated vaccines (TIVs) in a randomized trial in older adults. Non-frail adults ≥ 65 y old were randomly assigned to receive standard subunit, MF59-adjuvanted subunit, standard split-virus or intradermal split-virus TIV. Peripheral blood mononuclear cells (PBMC) harvested pre- and 3-weeks post-vaccination were stimulated with live A/H3N2 virus. PBMC supernatants were tested for interleukin 10 (IL-10) and interferon gamma (IFN-γ), and lysates for granzyme B (GrB). Flow cytometry identified CD4+ and CD8+ T- cells expressing intracellular IL-2, IL-10, IFN-γ, GrB, or perforin. Differences following immunization were assessed for paired subject samples and among vaccines. 120 seniors participated, 29-31 per group, which were well matched demographically. Virus-stimulated PBMCs were GrB-rich before and after vaccination, with minimal increases evident. Immunization did not increase secretion of IFN-γ or IL-10. However, cytolytic effector T-cells (CD8+GrB+perforin+) increased significantly in percentage post-vaccination in all groups, to similar mean values across groups. CD4+GrB+perforin+ T-cells also increased significantly after each vaccine, to similar mean values among vaccines. Vaccination did not increase the low baseline percentages of CD4+ or CD8+ T-cells expressing IFN-γ, IL-2 or IL-10 . In conclusion, participants had pre-existing cellular immunity to H3N2 virus. All 4 vaccines boosted cellular responses to a similar but limited extent, particularly cytolytic effector CD8+ T-cells associated with clinical protection against influenza
    corecore