13,113 research outputs found

    The use of simultaneous chemical precipitation in modified activated sludge systems exhibiting biological excess phosphate removal: Part 6: Modelling of simultaneous chemical-biological P removal - review of existing models

    Get PDF
    This paper reviews three published models for simultaneous chemical phosphorus precipitation in activated sludge systems using metal salts. In the first, a chemical equilibrium approach is used, based on observations made from batch and continuous-flow tests, a theoretical formula for metal (e.g. ferric) hydroxy-phosphate and a set of metal phosphate complexes or ion pairs for dissolved orthophosphate (orthoP) species. Apart from applying the precipitation stoichiometry observed in admixture with activated sludge, in this model no interaction between the chemical and biological mechanisms is accounted for and no biological processes are modelled. In the second model, a combined equilibrium-kinetic approach is used to model the chemical and biological processes. The chemical and biological processes become kinetically linked through soluble orthoP as a variable. This model includes biological processes for conventional activated sludge systems, but does not include biological excess P removal processes (BEPR). Apart from this limitation, a potential problem in the combined equilibrium-kinetic approach was identified: The precipitation reactions were modelled based on equilibrium chemistry and assumed to be complete at the start of simulation; precipitate, therefore, could not form dynamically during the ensuing kinetic simulation. Furthermore, the model predictions were very sensitive to the choice of certain key equilibrium (or solubility product) constants. The third approach was to model the precipitation (and dissolution) reactions as kinetic processes within a fully kinetic model for activated systems, including the processes for BEPR. This approach depends on the appropriate selection of rate constants for the forward (precipitation) and reverse (dissolution) reactions. In effect, a number of reactions from equilibrium chemistry are combined and replaced with one "surrogate" reaction having its own apparent equilibrium constant. The kinetic approach offers a number of advantages but is still subject to the limitation that it requires calibration against actual data from activated sludge systems in which simultaneous precipitation is applied. Moreover, interaction between the chemical and biological P removal mechanisms in the model is confined to "competition" for available soluble orthoP. This aspect requires further examination. WaterSA Vol.27(2) 2001: 135-15

    Mapping Epileptic Networks Using Simultaneous Intracranial EEG-fMRI

    Get PDF
    Background: Potentially curative epilepsy surgery can be offered if a single, discrete epileptogenic zone (EZ) can be identified. For individuals in whom there is no clear concordance between clinical localization, scalp EEG, and imaging data, intracranial EEG (icEEG) may be needed to confirm a predefined hypothesis regarding irritative zone (IZ), seizure onset zone (SOZ), and EZ prior to surgery. However, icEEG has limited spatial sampling and may fail to reveal the full extent of epileptogenic network if predefined hypothesis is not correct. Simultaneous icEEG-fMRI has been safely acquired in humans and allows exploration of neuronal activity at the whole-brain level related to interictal epileptiform discharges (IED) captured intracranially. Methods: We report icEEG-fMRI in eight patients with refractory focal epilepsy who had resective surgery and good postsurgical outcome. Surgical resection volume in seizure-free patients post-surgically reflects confirmed identification of the EZ. IEDs on icEEG were classified according to their topographic distribution and localization (Focal, Regional, Widespread, and Non-contiguous). We also divided IEDs by their location within the surgical resection volume [primary IZ (IZ1) IED] or outside [secondary IZ (IZ2) IED]. The distribution of fMRI blood oxygen level-dependent (BOLD) changes associated with individual IED classes were assessed over the whole brain using a general linear model. The concordance of resulting BOLD map was evaluated by comparing localization of BOLD clusters with surgical resection volume. Additionally, we compared the concordance of BOLD maps and presence of BOLD clusters in remote brain areas: precuneus, cuneus, cingulate, medial frontal, and thalamus for different IED classes. Results: A total of 38 different topographic IED classes were identified across the 8 patients: Focal (22) and non-focal (16, Regional = 9, Widespread = 2, Non-contiguous = 5). Twenty-nine IEDs originated from IZ1 and 9 from IZ2. All IED classes were associated with BOLD changes. BOLD maps were concordant with the surgical resection volume for 27/38 (71%) IED classes, showing statistical global maximum BOLD cluster or another cluster in the surgical resection volume. The concordance of BOLD maps with surgical resection volume was greater (p < 0.05) for non-focal (87.5%, 14/16) as compared to Focal (59%, 13/22) IED classes. Additionally, BOLD clusters in remote cortical and deep brain areas were present in 84% (32/38) of BOLD maps, more commonly (15/16; 93%) for non-focal IED-related BOLD maps. Conclusions: Simultaneous icEEG-fMRI can reveal BOLD changes at the whole-brain level for a wide range of IEDs on icEEG. BOLD clusters within surgical resection volume and remote brain areas were more commonly seen for non-focal IED classes, suggesting that a wider hemodynamic network is at play

    Comparing Mutuality and Solidarity in Its Application to Disaster Ethics

    Get PDF
    Often it has been observed that in disaster situations, people (including victims) become altruistic and are very willing to listen, obey and act in a manner that would help bring an end to the situation. In this chapter, linking disaster ethics and human rights, it is argued that this indeed is how it should be, disaster or otherwise, and that we have moral duties to oneself and to others. An individual exhibiting solidarity, comradery and altruism during a disaster is indeed behaving as a reasonable Self, and exercising ethical individualism as per Gewirthian philosophy. It is the duty of the State and society to act as a supportive State and a caring society. In order to do this, we need to be conditioned for ethical rationality before any whiff of disaster arises, i.e. in our day-to-day conduct and decision-making, at a personal, institutional and transnational level. Our ethical resilience during disasters can only be as robust as our rational moral compass during ‘peace-time’. This chapter argues that Gewirthian solidarity ethics (GSE) should play a role in European policy and action in order to provide a system that conditions ethical rationality and in order to fulfil human rights. This involves addressing our current understanding of human rights as distinct categories of civil, political, economic, social and cultural rights and to effect a shift towards a more holistic understanding of human rights, whereby the hierarchy of fulfilment does not always prioritise civil and political rights.Peer reviewe

    Notices sur les collaborateurs et les collaboratrices

    Get PDF
    Periprosthetic fracture (PF) after primary total hip replacement (THR) is an uncommon but potentially devastating complication. We analysed data on 257,202 primary THRs with cemented stems and 390 linked first revisions for PF recorded in the National Joint Registry (NJR) of England and Wales to determine if cemented femoral stem brand was associated with the risk of having revision for a PF after primary THR. All cemented femoral stem brands with more than 10,000 primary operations recorded in the NJR were identified. The four most commonly used cemented femoral stems were: Exeter V40 (n=146,409), CPT (n=24,300), C-Stem (n=15,113) and Charnley (n=20,182). We compared the revision risk ratios due to PF amongst the stems using a Poisson regression model adjusting for patient factors. Compared to the Exeter V40, the age, gender and ASA grade adjusted revision rate ratio for the cemented CPT stem was 3.89 (95%CI 3.07,4.93), for the C-Stem 0.89 (95%CI 0.57,1.41) and for the Charnley stem 0.41 (95%CI 0.24,0.70). Limitations of the study include incomplete data capture, analysis of only PF requiring revision and that observation does not imply causality. Nevertheless, this study demonstrates that the choice of a cemented stem is associated with the risk of revision for PF. </p

    Physical Response Functions of Strongly Coupled Massive Quantum Liquids

    Full text link
    We study physical properties of strongly coupled massive quantum liquids from their spectral functions using the AdS/CFT correspondence. The generic model that we consider is dense, heavy fundamental matter coupled to SU(N_c) super Yang-Mills theory at finite temperature above the deconfinement phase transition but below the scale set by the baryon number density. In this setup, we study the current-current correlators of the baryon number density using new techniques that employ a scaling behavior in the dual geometry. Our results, the AC conductivity, the quasi-particle spectrum and the Drude-limit parameters like the relaxation time are simple temperature-independent expressions that depend only on the mass-squared to density ratio and display a crossover between a baryon- and meson-dominated regime. We concentrated on the (2+1)-dimensional defect case, but in principle our results can also be generalized straightforwardly to other cases.Comment: 21 pages, 10 figures, extra paragraph and figure are added in response to referee's comment

    Effects of local hypothermia-rewarming on physiology, metabolism and inflammation of acutely injured human spinal cord.

    Get PDF
    In five patients with acute, severe thoracic traumatic spinal cord injuries (TSCIs), American spinal injuries association Impairment Scale (AIS) grades A-C, we induced cord hypothermia (33 °C) then rewarming (37 °C). A pressure probe and a microdialysis catheter were placed intradurally at the injury site to monitor intraspinal pressure (ISP), spinal cord perfusion pressure (SCPP), tissue metabolism and inflammation. Cord hypothermia-rewarming, applied to awake patients, did not cause discomfort or neurological deterioration. Cooling did not affect cord physiology (ISP, SCPP), but markedly altered cord metabolism (increased glucose, lactate, lactate/pyruvate ratio (LPR), glutamate; decreased glycerol) and markedly reduced cord inflammation (reduced IL1β, IL8, MCP, MIP1α, MIP1β). Compared with pre-cooling baseline, rewarming was associated with significantly worse cord physiology (increased ICP, decreased SCPP), cord metabolism (increased lactate, LPR; decreased glucose, glycerol) and cord inflammation (increased IL1β, IL8, IL4, IL10, MCP, MIP1α). The study was terminated because three patients developed delayed wound infections. At 18-months, two patients improved and three stayed the same. We conclude that, after TSCI, hypothermia is potentially beneficial by reducing cord inflammation, though after rewarming these benefits are lost due to increases in cord swelling, ischemia and inflammation. We thus urge caution when using hypothermia-rewarming therapeutically in TSCI

    A [4Fe-4S]-Fe(CO)(CN)-L-cysteine intermediate is the first organometallic precursor in [FeFe] hydrogenase H-cluster bioassembly.

    Get PDF
    Biosynthesis of the [FeFe] hydrogenase active site (the 'H-cluster') requires the interplay of multiple proteins and small molecules. Among them, the radical S-adenosylmethionine enzyme HydG, a tyrosine lyase, has been proposed to generate a complex that contains an Fe(CO)2(CN) moiety that is eventually incorporated into the H-cluster. Here we describe the characterization of an intermediate in the HydG reaction: a [4Fe-4S][(Cys)Fe(CO)(CN)] species, 'Complex A', in which a CO, a CN- and a cysteine (Cys) molecule bind to the unique 'dangler' Fe site of the auxiliary [5Fe-4S] cluster of HydG. The identification of this intermediate-the first organometallic precursor to the H-cluster-validates the previously hypothesized HydG reaction cycle and provides a basis for elucidating the biosynthetic origin of other moieties of the H-cluster

    Susceptibility of Candida glabrata biofilms to echinocandins: alterations in the matrix composition

    Get PDF
    Candidiases are the most recurrent fungal infections, especially among immunosuppressed patients. Although Candida albicans is still the most widespread isolated species, non-Candida albicans Candida species have been increasing. The goal of this work was to determine the susceptibility of C. glabrata biofilms to echinocandins and to evaluate their effect on the biofilm matrix composition, comparing the results with other Candida species. Drug susceptibilities were assessed through the determination of minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC) and minimum biofilm eradication concentration (MBEC) of caspofungin (Csf) and micafugin (Mcf). The -1,3 glucans content of the matrices was assessed after contact with the drugs. The data suggest that, generally, after contact with echinocandins, the concentration of -1,3 glucans increased. These adjustments in the matrix composition of C. glabrata biofilms and the chemical differences between Csf and Mcf, seem responsible and may determine the effectivity of the drug responses.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 [POCI-01–0145-FEDER-006684] and BioTecNorte operation [NORTE-01–0145-FEDER-000004] funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte, Célia F. Rodrigues’ [SFRH/BD/93078/2013] PhD grant and M. Elisa Rodrigues [SFRH/BPD/95401/2013] post-doctoral grant.info:eu-repo/semantics/publishedVersio
    • …
    corecore