CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Upper tropospheric ozone production from lightning NOx-impacted convection: Smoke ingestion case study from the DC3 campaign
Authors
EC Apel
MC Barth
+26 more
BM Basarab
DR Blake
NJ Blake
WH Brune
TL Campos
CA Cantrell
JH Crawford
JD Crounse
GS Diskin
FM Flocke
AR Fried
BG Heikes
AJ Hills
CR Homeyer
RS Hornbrook
GL Huey
T Mikovíny
DW O'Sullivan
J Peischl
IB Pollack
DD Riemer
SA Rutledge
TB Ryerson
AJ Weinheimer
PO Wennberg
A Wisthaler
Publication date
1 January 2015
Publisher
eScholarship, University of California
Abstract
©2015. American Geophysical Union. All Rights Reserved. As part of the Deep Convective Cloud and Chemistry (DC3) experiment, the National Science Foundation/National Center for Atmospheric Research (NCAR) Gulfstream-V (GV) and NASA DC-8 research aircraft probed the chemical composition of the inflow and outflow of two convective storms (north storm, NS, south storm, SS) originating in the Colorado region on 22 June 2012, a time when the High Park wildfire was active in the area. A wide range of trace species were measured on board both aircraft including biomass burning (BB) tracers hydrogen cyanide (HCN) and acetonitrile (ACN). Acrolein, a much shorter lived tracer for BB, was also quantified on the GV. The data demonstrated that the NS had ingested fresh smoke from the High Park fire and as a consequence had a higher VOC OH reactivity than the SS. The SS lofted aged fire tracers along with other boundary layer ozone precursors and was more impacted by lightning NOx (LNOx) than the NS. The NCAR master mechanism box model was initialized with measurements made in the outflow of the two storms. The NS and SS were predicted to produce 11 and 14ppbv of O3, respectively, downwind of the storm over 2days. Sensitivity tests revealed that the ozone production potential of the SS was highly dependent on LNOx. Normalized excess mixing ratios, ΔX/ΔCO, for HCN and ACN were determined in both the fire plume and the storm outflow and found to be 7.0±0.5 and 2.3±0.5pptvppbv-1, respectively, and 1.4±0.3pptvppbv-1 for acrolein in the outflow only
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Sustaining member
eScholarship - University of California
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:escholarship.org:ark:/1303...
Last time updated on 25/12/2021
Sustaining member
eScholarship - University of California
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:escholarship.org:ark:/1303...
Last time updated on 25/12/2021