12 research outputs found
Inhibition of translation by IFIT family members is determined by their ability to interact selectively with the 5'-terminal regions of cap0-, cap1- and 5'ppp- mRNAs.
Ribosomal recruitment of cellular mRNAs depends on binding of eIF4F to the mRNA's 5'-terminal 'cap'. The minimal 'cap0' consists of N7-methylguanosine linked to the first nucleotide via a 5'-5' triphosphate (ppp) bridge. Cap0 is further modified by 2'-O-methylation of the next two riboses, yielding 'cap1' (m7GpppNmN) and 'cap2' (m7GpppNmNm). However, some viral RNAs lack 2'-O-methylation, whereas others contain only ppp- at their 5'-end. Interferon-induced proteins with tetratricopeptide repeats (IFITs) are highly expressed effectors of innate immunity that inhibit viral replication by incompletely understood mechanisms. Here, we investigated the ability of IFIT family members to interact with cap1-, cap0- and 5'ppp- mRNAs and inhibit their translation. IFIT1 and IFIT1B showed very high affinity to cap-proximal regions of cap0-mRNAs (K1/2,app ∼9 to 23 nM). The 2'-O-methylation abrogated IFIT1/mRNA interaction, whereas IFIT1B retained the ability to bind cap1-mRNA, albeit with reduced affinity (K1/2,app ∼450 nM). The 5'-terminal regions of 5'ppp-mRNAs were recognized by IFIT5 (K1/2,app ∼400 nM). The activity of individual IFITs in inhibiting initiation on a specific mRNA was determined by their ability to interact with its 5'-terminal region: IFIT1 and IFIT1B efficiently outcompeted eIF4F and abrogated initiation on cap0-mRNAs, whereas inhibition on cap1- and 5'ppp- mRNAs by IFIT1B and IFIT5 was weaker and required higher protein concentrations
Activities of Ligatin and MCT-1/DENR in eukaryotic translation initiation and ribosomal recycling
Eukaryotic translation initiation begins with ribosomal recruitment of aminoacylated initiator tRNA (Met-tRNAMeti) by eukaryotic initiation factor eIF2. In cooperation with eIF3, eIF1, and eIF1A, Met-tRNAMeti/eIF2/GTP binds to 40S subunits yielding 43S preinitiation complexes that attach to the 5′-terminal region of mRNAs and then scan to the initiation codon to form 48S initiation complexes with established codon–anticodon base-pairing. Stress-activated phosphorylation of eIF2α reduces the level of active eIF2, globally inhibiting translation. However, translation of several viral mRNAs, including Sindbis virus (SV) 26S mRNA and mRNAs containing hepatitis C virus (HCV)-like IRESs, is wholly or partially resistant to inhibition by eIF2 phosphorylation, despite requiring Met-tRNAMeti. Here we report the identification of related proteins that individually (Ligatin) or together (the oncogene MCT-1 and DENR, which are homologous to N-terminal and C-terminal regions of Ligatin, respectively) promote efficient eIF2-independent recruitment of Met-tRNAMeti to 40S/mRNA complexes, if attachment of 40S subunits to the mRNA places the initiation codon directly in the P site, as on HCV-like IRESs and, as we show here, SV 26S mRNA. In addition to their role in initiation, Ligatin and MCT-1/DENR can promote release of deacylated tRNA and mRNA from recycled 40S subunits after ABCE1-mediated dissociation of post-termination ribosomes
5′ UTR m6A Promotes Cap-Independent Translation
SummaryProtein translation typically begins with the recruitment of the 43S ribosomal complex to the 5′ cap of mRNAs by a cap-binding complex. However, some transcripts are translated in a cap-independent manner through poorly understood mechanisms. Here, we show that mRNAs containing N6-methyladenosine (m6A) in their 5′ UTR can be translated in a cap-independent manner. A single 5′ UTR m6A directly binds eukaryotic initiation factor 3 (eIF3), which is sufficient to recruit the 43S complex to initiate translation in the absence of the cap-binding factor eIF4E. Inhibition of adenosine methylation selectively reduces translation of mRNAs containing 5′UTR m6A. Additionally, increased m6A levels in the Hsp70 mRNA regulate its cap-independent translation following heat shock. Notably, we find that diverse cellular stresses induce a transcriptome-wide redistribution of m6A, resulting in increased numbers of mRNAs with 5′ UTR m6A. These data show that 5′ UTR m6A bypasses 5′ cap-binding proteins to promote translation under stresses
Structural organization of mRNA complexes with major core mRNP protein YB-1
YB-1 is a universal major protein of cytoplasmic mRNPs, a member of the family of multifunctional cold shock domain proteins (CSD proteins). Depending on its amount on mRNA, YB-1 stimulates or inhibits mRNA translation. In this study, we have analyzed complexes formed in vitro at various YB-1 to mRNA ratios, including those typical for polysomal (translatable) and free (untranslatable) mRNPs. We have shown that at mRNA saturation with YB-1, this protein alone is sufficient to form mRNPs with the protein/RNA ratio and the sedimentation coefficient typical for natural mRNPs. These complexes are dynamic structures in which the protein can easily migrate from one mRNA molecule to another. Biochemical studies combined with atomic force microscopy and electron microscopy showed that mRNA–YB-1 complexes with a low YB-1/mRNA ratio typical for polysomal mRNPs are incompact; there, YB-1 binds to mRNA as a monomer with its both RNA-binding domains. At a high YB-1/mRNA ratio typical for untranslatable mRNPs, mRNA-bound YB-1 forms multimeric protein complexes where YB-1 binds to mRNA predominantly with its N-terminal part. A multimeric YB-1 comprises about twenty monomeric subunits; its molecular mass is about 700 kDa, and it packs a 600–700 nt mRNA segment on its surface
Proteasome-mediated cleavage of the Y-box-binding protein 1 is linked to DNA-damage stress response
YB-1 is a DNA/RNA-binding nucleocytoplasmic shuttling protein whose regulatory effect on many DNA- and RNA-dependent events is determined by its localization in the cell. Distribution of YB-1 between the nucleus and the cytoplasm is known to be dependent on nuclear targeting and cytoplasmic retention signals located within the C-terminal portion of YB-1. Here, we report that YB-1 undergoes a specific proteolytic cleavage by the 20S proteasome, which splits off the C-terminal 105-amino-acid-long YB-1 fragment containing a cytoplasmic retention signal. Cleavage of YB-1 by the 20S proteasome in vitro appears to be ubiquitin- and ATP-independent, and is abolished by the association of YB-1 with messenger RNA. We also found that genotoxic stress triggers a proteasome-mediated cleavage of YB-1 in vivo and leads to accumulation of the truncated protein in nuclei of stressed cells. Endoproteolytic activity of the proteasome may therefore play an important role in regulating YB-1 functioning, especially under certain stress conditions
Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation complexes
The mammalian Pelota/Hbs1 complex needs an additional protein, ABCE1, to dissociate stalled translation elongation complexes. ABCE1/Pelota/Hbs1 act specifically on elongation complexes stalled at the 3′-end (non-stop decay complexes) and play an additional role in the recycling of vacant 80S ribosome complexes
Inhibition of translation by IFIT family members is determined by their ability to interact selectively with the 5′-terminal regions of cap0-, cap1- and 5′ppp- mRNAs
Ribosomal recruitment of cellular mRNAs depends on binding of eIF4F to the mRNA’s 5′-terminal ‘cap’. The minimal ‘cap0’ consists of N7-methylguanosine linked to the first nucleotide via a 5′-5′ triphosphate (ppp) bridge. Cap0 is further modified by 2′-O-methylation of the next two riboses, yielding ‘cap1’ (m7GpppNmN) and ‘cap2’ (m7GpppNmNm). However, some viral RNAs lack 2′-O-methylation, whereas others contain only ppp- at their 5′-end. Interferon-induced proteins with tetratricopeptide repeats (IFITs) are highly expressed effectors of innate immunity that inhibit viral replication by incompletely understood mechanisms. Here, we investigated the ability of IFIT family members to interact with cap1-, cap0- and 5′ppp- mRNAs and inhibit their translation. IFIT1 and IFIT1B showed very high affinity to cap-proximal regions of cap0-mRNAs (K(1/2,app) ∼9 to 23 nM). The 2′-O-methylation abrogated IFIT1/mRNA interaction, whereas IFIT1B retained the ability to bind cap1-mRNA, albeit with reduced affinity (K(1/2,app) ∼450 nM). The 5′-terminal regions of 5′ppp-mRNAs were recognized by IFIT5 (K(1/2,app) ∼400 nM). The activity of individual IFITs in inhibiting initiation on a specific mRNA was determined by their ability to interact with its 5′-terminal region: IFIT1 and IFIT1B efficiently outcompeted eIF4F and abrogated initiation on cap0-mRNAs, whereas inhibition on cap1- and 5′ppp- mRNAs by IFIT1B and IFIT5 was weaker and required higher protein concentrations