829 research outputs found

    Divertor currents optimization procedure for JET-ILW high flux expansion experiments

    Get PDF
    This paper deals with a divertor coil currents optimized procedure to design High Flux Expansion (HFE) configurations in the JET tokamak aimed to study the effects of flux expansion variation on the radiation fraction and radiated power re-distribution. A number of benefits of HFE configuration have been experimentally demonstrated on TCV, EAST, NSTX and DIII-D tokamaks and are under investigation for next generation devices, as DEMO and DTT. The procedure proposed here exploits the linearized relation between the plasma-wall gaps and the Poloidal Field (PF) coil currents. Once the linearized model is provided by means of CREATE-NL code, the divertor coils currents are calculated using a constrained quadratic programming optimization procedure, in order to achieve HFE configuration. Flux expanded configurations have been experimentally realized both in ohmic and heated plasma with and without nitrogen seeding. Preliminary results on the effects of the flux expansion variation on total power radiation increase will be also briefly discussed

    Advances in material phase change modelling approach for EU-DEMO limiter’s plasma-facing components

    Get PDF
    Within the EU-DEMO first wall protection framework, work on limiter’s plasma-facing component design has started under plasma disruptive events (Richiusa et al., 2022). Starting from the rationale behind the TARTIFL&TTE software (Richiusa et al., 2022), this companion paper describes the progress on the engineering modelling of the plasma-facing material phase change under high heat flux, with the aid of COMSOL Multiphysics® software. The aim is to develop a reliable technique which can be used by designers for predicting how much of the solid armour undergoes phase change. This helps satisfy requirements for actively cooled components, such as at which armour depth safely locating the cooling system, and if its design can safely handle the heat transfer in the resulting component configuration after the disruption is extinguished. A few changes to the driving idea in Richiusa et al. (2022) will be also highlighted. The multiphysics software allows us to implement a 1D model which can be extended to 2D/3D geometries subjected to both uniform and non-uniform heat flux. It also offers the capability of conjugated heat transfer in solids and liquids by coupling the two different domains. Although this multiphysics approach is also investigated, no effort in melting layer motion modelling is done. Therefore, the equivalent way of validating this approach while reducing its computational time is working with one single solid domain, within which any liquid phase changes are tracked by an apparent heat capacity formulation. The vapour domain is not modelled. The material removal due to the evaporative mass flux is modelled by means of moving mesh frames which push the recessing liquid interface backwards according to gas kinetics-driven boundary conditions. The melt pool is not removed during the transient. Mass balance considerations drive the liquid-to-vapour interface velocity. The 3D Multiphisics implementation (3D-TARTIFL&TTE), is here supported by a benchmark activity and an application to the limiter’s plasma-facing armour, whose preferred chosen thickness is 20 mm

    Erratum: “Radiative heat load distribution on the EU-DEMO first wall due to mitigated disruptions” (Nuclear Materials and Energy (2020) 25, (S2352179120300971), (10.1016/j.nme.2020.100824))

    Get PDF
    The publisher regrets for the incorrect affiliation reported in the paper for one of the authors (S. Dulla, Politecnico di Torino). The publisher would like to apologise for any inconvenience caused

    Radiative heat load distribution on the EU-DEMO first wall due to mitigated disruptions

    Get PDF
    The EU-DEMO First Wall (FW) will be a relatively thin structure. In order not to damage this layer, heat loads distributed onto the wall should be carefully controlled. In the case of transient events, as for example plasma disruptions, the steady-state heat load limit (~1-2 MW/m^2) can be largely exceeded for a timespan sufficiently long to cause damages. Therefore, when the control system detects an upcoming disruption, Shattered Pellet Injection (SPI) or Massive Gas Injection (MGI) mitigation techniques can be employed to inject impurities and switch off the plasma safely. In the present work, the Monte-Carlo ray-tracing code CHERAB is used to compute the radiative heat load distribution on the EU-DEMO Plasma Facing Components (PFCs) due to a mitigated plasma disruption. By applying ad-hoc techniques to improve the quality of the Monte Carlo calculation, we obtain a peak radiative load of ~490 MW/m^2 on the PFCs, which is ~25% lower than previous estimates

    Divertor currents optimization procedure for JET-ILW high flux expansion experiments

    Get PDF
    This paper deals with a divertor coil currents optimized procedure to design High Flux Expansion (HFE) configurations in the JET tokamak aimed to study the effects of flux expansion variation on the radiation fraction and radiated power re-distribution. A number of benefits of HFE configuration have been experimentally demonstrated on TCV, EAST, NSTX and DIII-D tokamaks and are under investigation for next generation devices, as DEMO and DTT. The procedure proposed here exploits the linearized relation between the plasma-wall gaps and the Poloidal Field (PF) coil currents. Once the linearized model is provided by means of CREATE-NL code, the divertor coils currents are calculated using a constrained quadratic programming optimization procedure, in order to achieve HFE configuration. Flux expanded configurations have been experimentally realized both in ohmic and heated plasma with and without nitrogen seeding. Preliminary results on the effects of the flux expansion variation on total power radiation increase will be also briefly discussed.EURATOM 63305

    The isotope effect on divertor conditions and neutral pumping in horizontal divertor configurations in JET-ILW Ohmic plasmas

    Get PDF
    In the past at JET, with the MkI divertor, a systematic study of the influence of X-point height and poloidal flux expansion has been conducted [1,2] showing minor differences in the radiation distribution, whereas in [3] experiment and simulations have shown enhancement of detachment as the flux expansion was increased. More recently at JET, equipped with the ITER-like wall (ILW), radiative seeded scenarios have been studied and a maximum radiation fraction 75% has been achieved. EDGE2D-EIRENE [4–6] simula- tions [7,8] have already shown that the divertor heat fluxes can be reduced with N2 injection, qualita- tively consistent with experimental observations [9] , by adjusting the impurity injection rate to reproduce the measured divertor radiation. In this paper we will present edge predictive simulations on the assess- ment of effects of poloidal flux expansion and recycling on radiation distribution and X-point peaking on JET-ILW nitrogen seeded plasmas

    Comparison between finite element and experimental evidences of innovative W lattice materials for sacrificial limiter applications

    Get PDF
    Power exhaust is a key mission for the realization of fusion electricity. Engineering challenges may arise from the extreme heat fluxes developed during plasma transients, above the limit offered by existing materials. These can reduce the lifetime of plasma-facing components (PFCs), imposing extraordinary maintenance, reactor safety issues and ultimately delayed return to normal operation. Concerning the EU DEMO reactor, discrete sacrificial limiters are being investigated as the last safety resource of the reactor's wall in case of unmitigated events. Within this context, micro-engineered tungsten (W) lattices are proposed to cope with unmitigated plasma disruptions. Unlike bulk W, lattices can be tailored to meet the operational requirements of the limiter, compromise between steady-state and off-design performances while avoiding overloading of the heat sink and delay the need for extraordinary maintenance. By calibrating an equivalent solid model originally developed and validated for open-cell aluminum (Al) foams, tailored lattices have been modelled and samples fabricated through additive manufacturing for characterization and testing, currently ongoing. In the present work, the thermal response of lattice samples during thermal shock high heat flux (HHF) tests performed at the linear facility QSPA Kh-50 facility is simulated using ANSYS and compared with available results. Enthalpy changes of W were imposed to simulate phase change. Good agreement with experiments and SDC-IC reference up to melting point was observed. Ultimately, a thermal quench of an unmitigated DEMO disruption was simulated involving an original MAPDL routine that removes mesh elements at the melting or vaporization point.s

    Impact of plasma-wall interaction and exhaust on the EU-DEMO design

    Get PDF
    In the present work, the role of plasma facing components protection in driving the EU-DEMO design will be reviewed, focusing on steady-state and, especially, on transients. This work encompasses both the first wall (FW) as well as the divertor. In fact, while the ITER divertor heat removal technology has been adopted, the ITER FW concept has been shown in the past years to be inadequate for EU-DEMO. This is due to the higher foreseen irradiation damage level, which requires structural materials (like Eurofer) able to withstand more than 5 dpa of neutron damage. This solution, however, limits the tolerable steady-state heat flux to ~1 MW/m2, i.e. a factor 3–4 below the ITER specifications. For this reason, poloidally and toroidally discontinuous protection limiters are implemented in EU-DEMO. Their role consists in reducing the heat load on the FW due to charged particles, during steady state and, more importantly, during planned and off-normal plasma transients. Concerning the divertor configuration, EU-DEMO currently assumes an ITER-like, lower single null (LSN) divertor, with seeded impurities for the dissipation of the power. However, this concept has been shown by numerous simulations in the past years to be marginal during steady-state (where a detached divertor is necessary to maintain the heat flux below the technological limit and to avoid excessive erosion) and unable to withstand some relevant transients, such as large ELMs and accidental loss of detachment. Various concepts, deviating from the ITER design, are currently under investigation to mitigate such risks, for example in-vessel coils for strike point sweeping in case of reattachment, as well as alternative divertor configurations. Finally, a broader discussion on the impact of divertor protection on the overall machine design is presented
    • …
    corecore