96 research outputs found

    Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants

    Get PDF
    The production of biogas by anaerobic digestion (AD) of agricultural residues, organic wastes, animal excrements, municipal sludge, and energy crops has a firm place in sustainable energy production and bio-economy strategies. Focusing on the microbial community involved in biomass conversion offers the opportunity to control and engineer the biogas process with the objective to optimize its efficiency. Taxonomic profiling of biogas producing communities by means of high-throughput 16S rRNA gene amplicon sequencing provided high-resolution insights into bacterial and archaeal structures of AD assemblages and their linkages to fed substrates and process parameters. Commonly, the bacterial phyla Firmicutes and Bacteroidetes appeared to dominate biogas communities in varying abundances depending on the apparent process conditions. Regarding the community of methanogenic Archaea, their diversity was mainly affected by the nature and composition of the substrates, availability of nutrients and ammonium/ammonia contents, but not by the temperature. It also appeared that a high proportion of 16S rRNA sequences can only be classified on higher taxonomic ranks indicating that many community members and their participation in AD within functional networks are still unknown. Although cultivation-based approaches to isolate microorganisms from biogas fermentation samples yielded hundreds of novel species and strains, this approach intrinsically is limited to the cultivable fraction of the community. To obtain genome sequence information of non-cultivable biogas community members, metagenome sequencing including assembly and binning strategies was highly valuable. Corresponding research has led to the compilation of hundreds of metagenome-assembled genomes (MAGs) frequently representing novel taxa whose metabolism and lifestyle could be reconstructed based on nucleotide sequence information. In contrast to metagenome analyses revealing the genetic potential of microbial communities, metatranscriptome sequencing provided insights into the metabolically active community. Taking advantage of genome sequence information, transcriptional activities were evaluated considering the microorganism’s genetic background. Metaproteome studies uncovered enzyme profiles expressed by biogas community members. Enzymes involved in cellulose and hemicellulose decomposition and utilization of other complex biopolymers were identified. Future studies on biogas functional microbial networks will increasingly involve integrated multi-omics analyses evaluating metagenome, transcriptome, proteome, and metabolome datasets. © 2018, The Author(s)

    Complete Genome Sequence ofAcinetobacter baumanniiCIP 70.10, a Susceptible Reference Strain for Comparative Genome Analyses

    Get PDF
    Krahn T, Wibberg D, Maus I, et al. Complete Genome Sequence ofAcinetobacter baumanniiCIP 70.10, a Susceptible Reference Strain for Comparative Genome Analyses. Genome Announcements. 2015;3(4):e00850-15

    Complete genome sequence of the clinical strain Acinetobacter baumannii R2090 Carrying the chromosomally encoded Metallo-β-Lactamase Gene blaNDM-1

    Get PDF
    Acinetobacter baumannii is an emerging human pathogen causing nosocomial and community-acquired infections. Here, we present the complete genome sequence of the clinical A. baumannii strain R2090 carrying the metallo-β-lactamase gene blaNDM-1 in its chromosome within the transposon Tn125

    Complete genome sequence, lifestyle, and multi-drug resistance of the human pathogen Corynebacterium resistens DSM 45100 isolated from blood samples of a leukemia patient

    Get PDF
    Schröder J, Maus I, Meyer K, et al. Complete genome sequence, lifestyle, and multi-drug resistance of the human pathogen Corynebacterium resistens DSM 45100 isolated from blood samples of a leukemia patient. BMC Genomics. 2012;13(1): 141.BACKGROUND: Corynebacterium resistens was initially recovered from human infections and recognized as a new coryneform species that is highly resistant to antimicrobial agents. Bacteremia associated with this organism in immunocompromised patients was rapidly fatal as standard minocycline therapies failed. C. resistens DSM 45100 was isolated from a blood culture of samples taken from a patient with acute myelocytic leukemia. The complete genome sequence of C. resistens DSM 45100 was determined by pyrosequencing to identify genes contributing to multi-drug resistance, virulence, and the lipophilic lifestyle of this newly described human pathogen. RESULTS: The genome of C. resistens DSM 45100 consists of a circular chromosome of 2,601,311 bp in size and the 28,312-bp plasmid pJA144188. Metabolic analysis showed that the genome of C. resistens DSM 45100 lacks genes for typical sugar uptake systems, anaplerotic functions, and a fatty acid synthase, explaining the strict lipophilic lifestyle of this species. The genome encodes a broad spectrum of enzymes ensuring the availability of exogenous fatty acids for growth, including predicted virulence factors that probably contribute to fatty acid metabolism by damaging host tissue. C. resistens DSM 45100 is able to use external L-histidine as a combined carbon and nitrogen source, presumably as a result of adaptation to the hitherto unknown habitat on the human skin. Plasmid pJA144188 harbors several genes contributing to antibiotic resistance of C. resistens DSM 45100, including a tetracycline resistance region of the Tet W type known from Lactobacillus reuteri and Streptococcus suis. The tet(W) gene of pJA144188 was cloned in Corynebacterium glutamicum and was shown to confer high levels of resistance to tetracycline, doxycycline, and minocycline in vitro. CONCLUSIONS: The detected gene repertoire of C. resistens DSM 45100 provides insights into the lipophilic lifestyle and virulence functions of this newly recognized pathogen. Plasmid pJA144188 revealed a modular architecture of gene regions that contribute to the multi-drug resistance of C. resistens DSM 45100. The tet(W) gene encoding a ribosomal protection protein is reported here for the first time in corynebacteria. Cloning of the tet(W) gene mediated resistance to second generation tetracyclines in C. glutamicum, indicating that it might be responsible for the failure of minocycline therapies in patients with C. resistens bacteremia

    Complete Genome Sequence of the MethanogenMethanoculleus bourgensisBA1 Isolated from a Biogas Reactor

    Get PDF
    Maus I, Wibberg D, Winkler A, Pühler A, Schnürer A, Schlüter A. Complete Genome Sequence of the MethanogenMethanoculleus bourgensisBA1 Isolated from a Biogas Reactor. Genome Announcements. 2016;4(3): e00568-16.Methanoculleus bourgensis BA1, a hydrogenotrophic methanogen, was isolated from a laboratory-scale biogas reactor operating under an elevated ammonium concentration. Here, the complete genome sequence of M. bourgensis BA1 is reported. The availability of the BA1 genome sequence enables detailed comparative analyses involving other Methanoculleus spp. representing important members of microbial biogas communities

    Complete genome sequence of the methanogen Methanoculleus bourgensis BA1 isolated from a biogas reactor

    Get PDF
    Methanoculleus bourgensis BA1, a hydrogenotrophic methanogen, was isolated from a laboratory-scale biogas reactor operating under an elevated ammonium concentration. Here, the complete genome sequence of M. bourgensis BA1 is reported. The availability of the BA1 genome sequence enables detailed comparative analyses involving other Methanoculleus spp. representing important members of microbial biogas communities

    Complete Genome Sequence of the Novel Cellulolytic, Anaerobic, Thermophilic Bacterium Herbivorax saccincola Type Strain GGR1, Isolated from a Lab Scale Biogas Reactor as Established by Illumina and Nanopore MinION Sequencing

    Get PDF
    Pechtl A, Rückert C, Maus I, et al. Complete Genome Sequence of the Novel Cellulolytic, Anaerobic, Thermophilic Bacterium Herbivorax saccincola Type Strain GGR1, Isolated from a Lab Scale Biogas Reactor as Established by Illumina and Nanopore MinION Sequencing. Genome Announcements. 2018;6(6): e01493-17.The cellulolytic bacterium Herbivorax saccincola strain GGR1, which represents the type strain of this species, was isolated from the in vivo enriched cellulose-binding community of a lab scale thermophilic biogas reactor. Here, we report the complete genome sequence of H. saccincola GGR1T, the first isolated member of the genus Herbivorax

    The novel oligopeptide utilizing species Anaeropeptidivorans aminofermentans M3/9T, its role in anaerobic digestion and occurrence as deduced from large-scale fragment recruitment analyses

    Get PDF
    Research on biogas-producing microbial communities aims at elucidation of correlations and dependencies between the anaerobic digestion (AD) process and the corresponding microbiome composition in order to optimize the performance of the process and the biogas output. Previously, Lachnospiraceae species were frequently detected in mesophilic to moderately thermophilic biogas reactors. To analyze adaptive genome features of a representative Lachnospiraceae strain, Anaeropeptidivorans aminofermentans M3/9T was isolated from a mesophilic laboratory-scale biogas plant and its genome was sequenced and analyzed in detail. Strain M3/9T possesses a number of genes encoding enzymes for degradation of proteins, oligo- and dipeptides. Moreover, genes encoding enzymes participating in fermentation of amino acids released from peptide hydrolysis were also identified. Based on further findings obtained from metabolic pathway reconstruction, M3/9T was predicted to participate in acidogenesis within the AD process. To understand the genomic diversity between the biogas isolate M3/9T and closely related Anaerotignum type strains, genome sequence comparisons were performed. M3/9T harbors 1,693 strain-specific genes among others encoding different peptidases, a phosphotransferase system (PTS) for sugar uptake, but also proteins involved in extracellular solute binding and import, sporulation and flagellar biosynthesis. In order to determine the occurrence of M3/9T in other environments, large-scale fragment recruitments with the M3/9T genome as a template and publicly available metagenomes representing different environments was performed. The strain was detected in the intestine of mammals, being most abundant in goat feces, occasionally used as a substrate for biogas production.Peer Reviewe
    corecore