14 research outputs found

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic. Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-sex-location-year-specific deaths by the standard life expectancy at the age that death occurred. DALYs were calculated by summing YLDs and YLLs. HALE estimates were produced using YLDs per capita and age-specific mortality rates by location, age, sex, year, and cause. 95% uncertainty intervals (UIs) were generated for all final estimates as the 2·5th and 97·5th percentiles values of 500 draws. Uncertainty was propagated at each step of the estimation process. Counts and age-standardised rates were calculated globally, for seven super-regions, 21 regions, 204 countries and territories (including 21 countries with subnational locations), and 811 subnational locations, from 1990 to 2021. Here we report data for 2010 to 2021 to highlight trends in disease burden over the past decade and through the first 2 years of the COVID-19 pandemic. Findings: Global DALYs increased from 2·63 billion (95% UI 2·44–2·85) in 2010 to 2·88 billion (2·64–3·15) in 2021 for all causes combined. Much of this increase in the number of DALYs was due to population growth and ageing, as indicated by a decrease in global age-standardised all-cause DALY rates of 14·2% (95% UI 10·7–17·3) between 2010 and 2019. Notably, however, this decrease in rates reversed during the first 2 years of the COVID-19 pandemic, with increases in global age-standardised all-cause DALY rates since 2019 of 4·1% (1·8–6·3) in 2020 and 7·2% (4·7–10·0) in 2021. In 2021, COVID-19 was the leading cause of DALYs globally (212·0 million [198·0–234·5] DALYs), followed by ischaemic heart disease (188·3 million [176·7–198·3]), neonatal disorders (186·3 million [162·3–214·9]), and stroke (160·4 million [148·0–171·7]). However, notable health gains were seen among other leading communicable, maternal, neonatal, and nutritional (CMNN) diseases. Globally between 2010 and 2021, the age-standardised DALY rates for HIV/AIDS decreased by 47·8% (43·3–51·7) and for diarrhoeal diseases decreased by 47·0% (39·9–52·9). Non-communicable diseases contributed 1·73 billion (95% UI 1·54–1·94) DALYs in 2021, with a decrease in age-standardised DALY rates since 2010 of 6·4% (95% UI 3·5–9·5). Between 2010 and 2021, among the 25 leading Level 3 causes, age-standardised DALY rates increased most substantially for anxiety disorders (16·7% [14·0–19·8]), depressive disorders (16·4% [11·9–21·3]), and diabetes (14·0% [10·0–17·4]). Age-standardised DALY rates due to injuries decreased globally by 24·0% (20·7–27·2) between 2010 and 2021, although improvements were not uniform across locations, ages, and sexes. Globally, HALE at birth improved slightly, from 61·3 years (58·6–63·6) in 2010 to 62·2 years (59·4–64·7) in 2021. However, despite this overall increase, HALE decreased by 2·2% (1·6–2·9) between 2019 and 2021. Interpretation: Putting the COVID-19 pandemic in the context of a mutually exclusive and collectively exhaustive list of causes of health loss is crucial to understanding its impact and ensuring that health funding and policy address needs at both local and global levels through cost-effective and evidence-based interventions. A global epidemiological transition remains underway. Our findings suggest that prioritising non-communicable disease prevention and treatment policies, as well as strengthening health systems, continues to be crucially important. The progress on reducing the burden of CMNN diseases must not stall; although global trends are improving, the burden of CMNN diseases remains unacceptably high. Evidence-based interventions will help save the lives of young children and mothers and improve the overall health and economic conditions of societies across the world. Governments and multilateral organisations should prioritise pandemic preparedness planning alongside efforts to reduce the burden of diseases and injuries that will strain resources in the coming decades. Funding: Bill & Melinda Gates Foundation

    Processo De Purificação De Frutooligossacarìdeos Utilizando Coluna De Leito Fixo Com Carvão Ativo

    No full text
    PROCESSO DE PURIFICAÇÃO DE FRUTOOLIGOSSACARIDEOS UTILIZANDO COLUNA DE LEITO FIXO COM CARVÃO ATIVO. Purificação de frutooligossacarídeos obtidos de síntese enzimática através de coluna de leito fixo com tavão ativo é um processo de separação de açúcares, onde a solução de síntese dos açúcares é injetada na coluna de separação e as frações de açúcares separadas são coletadas ao final da coluna. Com esta etapa de separação os frutooligossacarídeos que são atualmente conhecidos não só pelo seu poder adoçante, mas também pelas suas propriedades funcionais, poderão ser aplicados industrialmente em produtos alimentícios, como iogurtes, barras de cereais. Atualmente eles apresentam-se na forma de misturas, aumentando assim, o seu valor comercial.BRPI0904143 (A2)B01D15/00BR2009PI04143B01D15/0

    Processo De Purificação De Frutooligossacarìdeos Utilizando Coluna De Leito Fixo Com Zeólita

    No full text
    PROCESSO DE PURIFICAÇÃO DE FRUTOOLIGOSSACARIDEOS UTILIZANDO COLUNA DE LEITO FIXO COM ZEÓLITA. Purificação de frutooligossacarídeos obtidos de síntese enzimática através de coluna de leito fixo de zeólita NaX é um processo de separação de açúcares, onde a solução de síntese dos açúcares é injetada na coluna de separação e as frações de açúcares separadas são coletadas ao final da coluna. Com esta etapa de separação os frutooligossacarídeos que são atualmente conhecidos não só pelo seu poder adoçante, mas também pelas suas propriedades funcionais, poderão ser aplicados industrialmente em produtos alimentícios, como iogurtes, barras de cereais. Atualmente eles apresentam-se na forma de misturas, aumentando assim, o seu valor comercial.BRPI0904119 (A2)C07H1/06C07H3/06BR2009PI04119C07H1/06C07H3/0

    Processo Para Obtenção De Um Biocatalisador Imobilizado Em Suporte Sólido Inorgánico, Sistema De Imobilização E Biocatalisador

    No full text
    PROCESSO PARA OBTENÇÃO DE UM BIOCATALISADOR IMOBILIZADO EM SUPORTE SÓLIDO INORGÂNICO, SISTEMA DE IMOBILIZAÇÃO E BIOCATALISADOR. A presente invenção refere-se a um processo para obtenção de um biocatalisador imobilizado. Mais especificamente, a metodologia utilizada no referido processo consiste na obtenção de um novo suporte sólido para imobilização de uma enzima. Adicionalmente, a presente invenção refere-se a um sistema para imobilização da enzima, o qual compreende reações fisico-químicos a fim de receber uma carga de enzima e adsorvê-la firmemente. O biocatalisador obtido na presente concretização é inócuo ao meio ambiente, aos seres vivos em geral e pode ser reutilizável, garante que o processo de reação seja acelerado cerca de 30 vezes mais do que quando se utiliza a enzima em sua forma nativa. As vantagens do presente processo consistem basicamente no fato de que o suporte sólido é obtido por meio de minérios de fácil obtenção, o custo do processo é reduzido e há facilidade de reprodução da metodologia. Os biocatalisadores podem ser aplicados em diferentes tipos de bioprocessos, em diferentes ramos da atividade industrial, tais como indústrias alimentícias, químicas e farmacêuticas, entre outras.BRPI0706083 (A2)C12N11/06BR2007PI06083C12N11/0

    Alimento Funcional, Composição Probiótica, Composição Alimentìcia E Processo De Produção De Alimento Funcional Fermentado A Base De Soja, Contendo Agentes Probióticos E Prebióticos

    No full text
    ALIMENTO FUNCIONAL COMPOSIÇÃO PROBIÓTICA, COMPOSIÇÃO ALIMENTÍCIA E PROCESSO DE PRODUÇÃO DE ALIMENTO FUNCIONAL FERMENTADO A BASE DE SOJA, CONTENDO AGENTES PROBIÓTICOS E PREBIÓTICOS. A presente invenção se refere aos processos de produção de alimentos funcionais e/ou simbióticos, fermentados ou não, derivados do extrato hidrossolúvel de soja contendo agentes probióticos (microorganismos vivos) e enriquecido ou não com agentes prebióticos, in natura, adoçados ou temperados, no intuito de se obter um suplemento alimentar funcional e/ou simbiótico, propiciando benefícios à saúde do hospedeiro. Mais especificamente, os produtos citados são obtidos através da fermentação ou não do extrato hidrossolúvel de soja ou em mistura com outros extratos vegetais (como sucos de fruta, extratos de leguminosas, cereais. verduras, ou quaisquer parte vegetal consumível) pela adição de bactérias dos gêneros Lactobacillus spp, Bifidobacterium sp, Enterococcus sp. Lactococcus sp. Eubactérias, Streptococcus sp e Streptococci sp, puros ou em mistura em condições ótimas de processo; com a adição ou não de açúcares vegetais como frutose, sacarose, adoçantes hipocalóricos como sucralose, acesulfame-K, estévia, silitol, entre outros; enriquecido ou não com agentes prebióticos como a polidextrose, oligossacarídeos tais como frutooligossacarídeos, inulina, mananooligossacarídeos, galactooligossacarideos, transgalactooligossacarídeos, ladulose, lactilol, etc.; outros ingredientes alimentares funcionais podem ser adicionados como fitosterois, ácidos graxospolinsaturados, antioxidantes, vitaminas e minerais; e, outros componentes de sabor, aroma e textura, como preparados de fruta e ou vegetais, aromatizantes, flavorizantes, sais minerais, e coadjuvantes de textura, homogeneização e estabilização como gomas, substâncias pécticas, entre outros. Estes produtos podem ser apresentados na forma de produtos terminados ou semiprocessados, como liofilizados ou em pó para misturas instantâneas, ou produtos terminados como sólidos, semi-sólidos ou líquidos fermentados ou não.BRPI0504056 (A)A23J3/16A23C11/10A23L1/105BR2005PI04056A23J3/16A23C11/10A23L1/10

    Processo De Obtenção De Frutose Pura E Xarope Invertido A Partir De Sacarose

    No full text
    PROCESSO DE OBTENÇÃO DE FRUTOSE PURA E XAROPE INVERTIDO A PARTIR DE SACAROSE. É um processo de conversão da sacarose por via enzimática em glicose e frutose. O biocatalisador utilizado é a inulinase de Kluyveromyces marxianus imobilizada em gel alginato de cálcio. A enzima é obtida por fermentação em meio sintético e a seguir purificada parcialmente por precipitação com etanol. O passo seguinte é a imobilização da inulinase em suporte sólido para facilitar a separação dos produtos da reação enzimática. A montagem do biorreator é feita montando uma coluna de leito fixo com as esferas de inulinase imobilizada e as condições de operação foram otimizadas para conversão da sacarose em frutose e glicose. As condições de operação determinam a composição final do produto, que pode conter somente glicose e frutose ou uma mistura de glicose e frutose e sacarose não convertida. Este produto final obtido, o xarope de açúcar invertido, é muito utilizado na produção de refrigerantes, doces e produtos farmacêuticos. Para obtenção da frutose pura é necessária uma etapa final de separação que é realizada em coluna de leito fixo contendo zeólita Y na forma bárica. A eleição é feita com solução elanólica a 15%, produzindo mais de 65% da frutose na forma pura. A frutose é apontada como o açúcar ideal do ponto de vista nutricional, já que devido ao seu elevado poder edulcorante acarreta uma redução calórica na dieta e pode ser utilizada por pessoas diabéticas e obesas. O microrganismo do gênero Kluyverornyces possui identificação GRAS do FDA americano não apresentando, portanto risco para utilização em alimentos de consumo humano.BRPI0401146 (A)C12P19/02C12N9/24C12N11/06C12N11/10BR2004PI01146C12P19/02C12N9/24C12N11/06C12N11/1

    Process Of Extractive Fermentation And Use Thereof

    No full text
    PROCESSO DE FERMENTAÇÃO EXTRATIVA E USO DO MESMO. A presente invenção se refere a um processo de fermentação extrativa. Mais especificamente, a presente invenção se refere a um processo de fermentação extrativa que emprega um único solvente capaz de remover produtos e inibidores simultaneamente, além de resfriar o meio. Além disso, apresente invenção se refere ao uso do processo. Especificamente, a presente invenção se refere ao uso do biodiesel, tais como biodiesel de óleo de soja, de milho, de mamona, de dendezeiro, de macaúba, de macaúba, entre outros, como agente extrator biocompatível para a extração in-situ de produto e/ou componentes inibidores da fermentação, especificamente o produto da fermentação e compostos inibidores presentes nos mostos provenientes de processos hidrolíticos de matéria-prima lingocelulósica, amilácea, carboidratos diretamente extraíveis, melaços fortemente esgotados com alto conteúdo de inibidores como, entre outros, biotina, ou mostos similares ricos em carboidratos, como também para o resfriamento do meio da fermentação pelo próprio solvente.BRPI1105142 (A2)C12P7/06B01D3/34B01D11/04BR2011PI05142C12P7/06B01D3/34B01D11/0

    Processo De Produção De Etanol A Partir Da Hidrólise Enzimática De Biomassa, Processo De Separação Da Matéria-prima De Hidrólise E Uso De Células De Parênquima Para Obtenção De Etanol

    No full text
    Processo de produção de etanol a partir da hidrólise enzimática de biomassa, processo de separação da matéria-prima de hidrólise e uso de células de parênquima para obtenção de etanol. A presente invenção contempla um processo e um método paraobtenção de etanol a partir de células de parênquima de biomassa. É um objeto adicional da presente invenção o uso de células de parênquima para hidrólise enzimática do processo e método de obtenção de etanol. Um aprimoramento do processo e do método de obtenção de etanol compreende uma etapa de separação das células de parênquima da matéria-prima biomassa selecionado dentre plantas monocotiledónias. As células de parênquima, as quais são naturalmente deslignificadas e de pequeno tamanho. A conversão em açúcares redutores totais foi superior a 95%, com baixo consumo de enzimas e um menor tempo de hidrólise.BRPI1004486 (A2)C12P7/10C12P19/02C12Q1/34BR2010PI04486C12P7/10C12P19/02C12Q1/3
    corecore