78 research outputs found

    The influence of weathering and soil organic matter on Zn isotopes in soils

    Get PDF
    Zinc is an essential micronutrient that is ultimately released during mineral weathering. In soils, organic matter plays a key role in influencing Zn partitioning and therefore on Zn biogeochemical cycling. Soil organic matter is partitioned between carbon that is more readily available for decomposition by microorganisms, and more stable carbon transiently preserved from decomposition. The role of the stable pool of soil organic matter on Zn biogeochemical cycling remains poorly understood. The pool of stable carbon is controlled by combination with mineral constituents or is material that is intrinsically resistant to decomposition. The Zn stable isotopes are fractionated by interactions between Zn and soil mineral and organic constituents. This study reports the Zn isotope composition of five Icelandic soil profiles derived from the same parent basalt and characterized by contrasting degrees of weathering and organic matter content (δ66Zn = + 0.10 ± 0.05 to + 0.35 ± 0.02‰), the distribution of reactive mineral constituents available to form associations with soil organic matter, and the amount of stable organic carbon. Throughout these soils, the δ66Zn isotope variations are little influenced by mineral constituents, but rather by soil organic matter content. These data suggest that a combination of organic matter accumulation and Zn loss by leaching is required to explain the observed decrease in Zn concentration in soils and lighter soil δ66Zn with increasing organic carbon content. These results suggest that the presence of stable organic carbon in soils provides a pool of light Zn, attributed to the Zn isotope signature of organic matter partially preserved from decomposition. Crucially, this stable organic carbon pool may also contribute to the formation of the light Zn isotope sink reported in organic-rich marine sediments, a key output required to explain the oceanic mass balance of Zn isotopes

    Redox transfer at subduction zones: insights from Fe isotopes in the Mariana forearc

    Get PDF
    Subduction zones are active sites of chemical exchange between the Earth’s surface and deep interior and play a fundamental role in regulating planet habitability. However, the mechanisms by which redox sensitive elements (e.g., iron, carbon and sulfur) are cycled during subduction remains unclear. Here we use Fe stable isotopes (δ56Fe), which are sensitive to redox-related processes, to examine forearc serpentinite clasts recovered from deep sea drilling of mud volcanoes formed above the Mariana subduction zone in the Western Pacific. We show that serpentinisation of the forearc by slab-derived fluids produces dramatic δ56Fe variation. Unexpected negative correlations between serpentinite bulk δ56Fe, fluid-mobile element concentrations (e.g., B, As) and Fe3+/ƩFe suggest a concomitant oxidation of the mantle wedge through the transfer of isotopically light iron by slab-derived fluids. This process must reflect the transfer of either sulfate- or carbonate-bearing fluids that preferentially complex isotopically light Fe

    Black pitch, carved histories: radiocarbon dating, wood species identification and strontium isotope analysis of prehistoric wood carvings from Trinidad's Pitch Lake

    Get PDF
    We report on the results of a multi-disciplinary project (including wood identification, radiocarbon dating and strontium isotope analysis) focused on a collection of pre-Columbian wooden carvings and human remains from Pitch Lake, Trinidad. While the lake's unusual conditions are conducive to the survival of organic artefacts, they also present particular challenges for analysis. There is a loss of any contextual association beyond that of the lake, and specific methodologies are required to deal with pitch contamination. A surprising taxonomic range of woods was employed for the various utilitarian and ceremonial items recovered. The 14C results range from ca. 3200 BCE to ca. 700 CE, and include the earliest known wooden carvings in the entire Caribbean. The strontium isotope results - interpreted with the aid of an isoscape developed for the project, based on extensive samples of modern trees across Trinidad and Tobago - indicate that most carvings are consistent with the site's immediate environs; however, a ‘weaving tool’ came from a more radiogenic region that is unlikely to be found on Trinidad, suggesting links with the South American mainland

    Shallow forearc mantle dynamics and geochemistry: New insights from IODP Expedition 366

    Get PDF
    The Mariana forearc is a unique setting on Earth where serpentinite mud volcanoes exhume clasts originating from depths of 15 km and more from the forearc mantle. These peridotite clasts are variably serpentinized by interaction with slab derived fluid, and provide a record of forearc mantle dynamics and changes in geochemistry with depth. During International Oceanic Discovery Program (IODP) Expedition 366, we recovered serpentinized ultramafic clasts contained within serpentinite muds of three different mud volcanoes located at increasing distance from the Mariana trench and at increasing depth to the slab/mantle interface: Yinazao (distance to the trench: 55 km / depth to the slab/mantle interface: 13 km), Fantangisña (62 km / 14 km) and Asùt Tesoru (72 km / 18 km). Four different types of ultramafic clasts were recovered: blue serpentinites, lizardite-serpentinites, antigorite/lizardite- and antigorite-serpentinites. Lizardite-serpentinites are primarily composed of orange serpentine, forming mesh and bastite textures. Raman and microprobe analyses revealed that these textures contain a mixture of Fe-rich brucite (XMg ~ 0.84) and lizardite/chrysotile. Antigorite/lizardite- and antigorite-serpentinites record the progressive recrystallization of mesh and bastite textures to antigorite, magnetite and pure Fe-poor brucite (XMg ~ 0.92). Oxygen isotope compositions of clasts and pore fluids showed that the transition from lizardite to antigorite is due to the increase in temperature from 200 °C to about 400 °C within the forearc area above the slab/mantle interface. Lizardite-, antigorite/lizardite- and antigorite-serpentinites displayed U-shaped chondrite normalized Rare Earth Element (REE) patterns and are characterized by high fluid mobile element concentrations (Cs, Li, Sr, As, Sb, B, Li) relative to abyssal peridotites and/or primitive mantle. The recrystallization of lizardite to antigorite is accompanied by a decrease in Cs, Li and Sr, and an increase in As and Sb concentrations in the bulk clasts, whereas B concentrations are relatively constant. Some clasts are overprinted by blue serpentine, often in association with sulfides. Most of these blue serpentinites were recovered at Yinazao and the uppermost units of Fantangisña and Asùt Tesoru suggesting alteration in the shallower portions of the forearc, possibly during exhumation of the clasts. This episode of alteration resulted in a flattening of REE spectra and an increase of Zn concentrations in serpentinites. Otherwise, no systematic changes of ultramafic clasts chemistry or mineralogy were observed with increasing depth to the slab. The samples document previously undescribed prograde metamorphic events in the shallow portions of the Mariana subduction zone, consistent with a continuous burial of the serpentinized forearc mantle during subduction. Similar processes, induced by the interaction with fluids released from the downgoing slab, likely occur in subduction zones worldwide. At greater depth, breakdown of brucite and antigorite will result in the massive transfer of fluids and fluid mobile elements, such as As, Sb and B, to the source of arc magmas

    Corrigendum to "The 2014-15 eruption and the short-term geochemical evolution of the Fogo volcano (Cape Verde):Evidence for small-scale mantle heterogeneity" [Lithos 288-289 (2017) 91-107]

    Get PDF
    The authors regret that the legends of Figs. 8, 9 and 10 have been presented in a wrong sequence. For the caption of Fig. 8, see Fig.10 (Page 103). For the caption of Fig. 9, see Fig. 8 (Page 101). For the caption of Fig. 10, see Fig. 8 (Page 102). The authors would like to apologise for any inconvenience caused.SCOPUS: er.jinfo:eu-repo/semantics/publishe

    The 2014-15 eruption and the short-term geochemical evolution of the Fogo volcano (Cape Verde)::Evidence for small-scale mantle heterogeneity

    Get PDF
    Recurrent eruptions at very active ocean island volcanoes provide the ideal means to gain insight on the scale of spatial variations at the mantle source and on temporal changes of magma genesis and evolution processes. In 2014, after 19 years of quiescence, Fogo volcano (Cape Verde Archipelago) experienced a new eruption, with the vents located 200 m from those of the 1995 eruption, and less than 2000 m from those of the 1951 event. This offered a unique opportunity to investigate the existence of small-scale mantle heterogeneities and the short-term compositional evolution of magmas erupted by a very active oceanic volcano like Fogo. Here we present petrological and geochemical data from the early stages of the Fogo's most recent eruption - started on November 23, 2014 - and compare them with the signature of previous eruptions (particularly those of 1995 and 1951). The magmas erupted in 2014 are alkaline (up to 23.4% and 0.94% of normative ne and lc, respectively) with somewhat evolved compositions (Mg # < 56), ranging from tephrites to phonotephrites. The eruption of phonotephritic lavas preceded the effusion of tephritic ones. Lavas carried to the surface clinopyroxene and kaersutite phenocrysts and cognate megacrysts, which indicate that the main stages of magma evolution occurred in magma chambers most probably located at mantle depths (25.6 5.5 km below sea level). This was followed by a shallower (<1.5 km below sea level) and shorter (approximate to 50 days) magma stagnation before the eruption. 2014 magmas have more unradiogenic Sr and more radiogenic Nd compositions than those of the previous 1951 and 1995 eruptions, which generally have less radiogenic Pb ratios. These isotopic differences- coming from quasi-coeval materials erupted almost in the same place- are remarkable and reflect the small-scale heterogeneity of the underlying mantle source. Moreover, they reflect the limited isotopic averaging of the source composition during partial melting events as well as the inefficient homogenization within the plumbing system when on route to the surface. The lid effect of an old and thick lithosphere is considered of utmost importance to the preservation of a significant part of source heterogeneity by erupted magmas. The decrease in the contribution of an enriched component to the Fogo magmas in the 2014 eruption marks a change on the volcano shortterm evolution that was characterized by a progressive increase of the importance of such a component. Nb/U ratios of the 2014 lavas are similar, within 2 sigma, to the mean value of OIB, but significantly lower than those reported for the 1995 and 1951 eruptions. This is considered to reflect the lack of significant mixing of the 2014 magmas with lithospheric melts, as opposed to what is here hypothesised for the two previous eruptions.info:eu-repo/semantics/publishedVersio
    • …
    corecore