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Abstract: The Mariana forearc is a unique setting on Earth where 

serpentinite mud volcanoes exhume clasts originating from depths of 15 km 

and more from the forearc mantle. These peridotite clasts are variably 

serpentinized by interaction with slab derived fluid, and provide a 

record of forearc mantle dynamics and changes in geochemistry with depth. 

During International Oceanic Discovery Program (IODP) Expedition 366, we 

recovered serpentinized ultramafic clasts contained within serpentinite 

muds of three different mud volcanoes located at increasing distance from 

the Mariana trench and at increasing depth to the slab/mantle interface: 

Yinazao (distance to the trench: 55 km / depth to the slab/mantle 

interface: 13km), Fantangisña (62 km / 14 km) and Asùt Tesoru (72 km / 18 

km). Four different types of ultramafic clasts were recovered: blue 

serpentinites, lizardite-serpentinites, antigorite/lizardite- and 

antigorite-serpentinites. Lizardite-serpentinites are primarily composed 

of orange serpentine, forming mesh and bastite textures. Raman and 

microprobe analyses revealed that these textures contain a mixture of Fe-

rich brucite (XMg ⁓ 0.84) and lizardite/chrysotile. 
Antigorite/lizardite- and antigorite-serpentinites record the progressive 

recrystallization of mesh and bastite textures to antigorite, magnetite 

and pure Fe-poor brucite (XMg ⁓ 0.92). Oxygen isotope compositions of 
clasts and pore fluids showed that the transition from lizardite to 

antigorite is due to the increase in temperature from 200°C to about 

400°C within the forearc area above the slab/mantle interface. Lizardite-

, antigorite/lizardite- and antigorite-serpentinites displayed U-shaped 

chondrite normalized Rare Earth Element (REE) patterns and are 

characterized by high fluid mobile element concentrations (Cs, Li, Sr, 

As, Sb, B, Li) relative to abyssal peridotites and/or primitive mantle. 

The recrystallization of lizardite to antigorite is accompanied by a 

decrease in Cs, Li and Sr, and an increase in As and Sb concentrations in 

the bulk clasts, whereas B concentrations are relatively constant. Some 

clasts are overprinted by blue serpentine, often in association with 

sulfides. Most of these blue serpentinites were recovered at Yinazao and 

the uppermost units of Fantangisña and Asùt Tesoru suggesting alteration 

in the shallower portions of the forearc, possibly during exhumation of 
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the clasts. This episode of alteration resulted in a flattening of REE 

spectra and an increase of Zn concentrations in serpentinites. Otherwise, 

no systematic changes of ultramafic clasts chemistry or mineralogy were 

observed with increasing depth to the slab. The samples document 

previously undescribed prograde metamorphic events in the shallow 

portions of the Mariana subduction zone, consistent with a continuous 

burial of the serpentinized forearc mantle during subduction. Similar 

processes, induced by the interaction with fluids released from the 

downgoing slab, likely occur in subduction zones worldwide. At greater 

depth, breakdown of brucite and antigorite will result in the massive 

transfer of fluids and fluid mobile elements, such as As, Sb and B, to 

the source of arc magmas. 
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Abstract 

The Mariana forearc is a unique setting on Earth where serpentinite mud volcanoes exhume clasts 

originating from depths of 15 km and more from the forearc mantle. These peridotite clasts are 

variably serpentinized by interaction with slab derived fluid, and provide a record of forearc mantle 

dynamics and changes in geochemistry with depth. During International Oceanic Discovery Program 

(IODP) Expedition 366, we recovered serpentinized ultramafic clasts contained within serpentinite 

muds of three different mud volcanoes located at increasing distance from the Mariana trench and at 

increasing depth to the slab/mantle interface: Yinazao (distance to the trench: 55 km / depth to the 

slab/mantle interface: 13km), Fantangisña (62 km / 14 km) and Asùt Tesoru (72 km / 18 km). Four 

different types of ultramafic clasts were recovered: blue serpentinites, lizardite-serpentinites, 

antigorite/lizardite- and antigorite-serpentinites. Lizardite-serpentinites are primarily composed of 

orange serpentine, forming mesh and bastite textures. Raman and microprobe analyses revealed that 

these textures contain a mixture of Fe-rich brucite (XMg ⁓ 0.84) and lizardite/chrysotile. 

Antigorite/lizardite- and antigorite-serpentinites record the progressive recrystallization of mesh and 

bastite textures to antigorite, magnetite and pure Fe-poor brucite (XMg ⁓ 0.92). Oxygen isotope 

compositions of clasts and pore fluids showed that the transition from lizardite to antigorite is due to 

the increase in temperature from 200°C to about 400°C within the forearc area above the slab/mantle 

interface. Lizardite-, antigorite/lizardite- and antigorite-serpentinites displayed U-shaped chondrite 

normalized Rare Earth Element (REE) patterns and are characterized by high fluid mobile element 

concentrations (Cs, Li, Sr, As, Sb, B, Li) relative to abyssal peridotites and/or primitive mantle. The 

recrystallization of lizardite to antigorite is accompanied by a decrease in Cs, Li and Sr, and an 

increase in As and Sb concentrations in the bulk clasts, whereas B concentrations are relatively 

constant. Some clasts are overprinted by blue serpentine, often in association with sulfides. Most of 

these blue serpentinites were recovered at Yinazao and the uppermost units of Fantangisña and Asùt 

Tesoru suggesting alteration in the shallower portions of the forearc, possibly during exhumation of 

the clasts. This episode of alteration resulted in a flattening of REE spectra and an increase of Zn 

concentrations in serpentinites. Otherwise, no systematic changes of ultramafic clasts chemistry or 
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mineralogy were observed with increasing depth to the slab. The samples document previously 

undescribed prograde metamorphic events in the shallow portions of the Mariana subduction zone, 

consistent with a continuous burial of the serpentinized forearc mantle during subduction. Similar 

processes, induced by the interaction with fluids released from the downgoing slab, likely occur in 

subduction zones worldwide. At greater depth, breakdown of brucite and antigorite will result in the 

massive transfer of fluids and fluid mobile elements, such as As, Sb and B, to the source of arc 

magmas. 



Highlights: 

 Clasts from Mariana mud volcanoes record three different stages of serpentinization 

 Transition lizardite to antigorite enhanced by an increase of temperature from 200 to 400°C 

 Evidences for a continuous burial of the serpentinized forearc during subduction 

 Phase transitions accompanied by a modification of trace element chemistry 

*Highlights (for review)
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Abstract 18 

The Mariana forearc is a unique setting on Earth where serpentinite mud volcanoes exhume clasts 19 

originating from depths of 15 km and more from the forearc mantle. These peridotite clasts are 20 

variably serpentinized by interaction with slab derived fluid, and provide a record of forearc mantle 21 

dynamics and changes in geochemistry with depth. During International Oceanic Discovery Program 22 

(IODP) Expedition 366, we recovered serpentinized ultramafic clasts contained within serpentinite 23 

muds of three different mud volcanoes located at increasing distance from the Mariana trench and at 24 

increasing depth to the slab/mantle interface: Yinazao (distance to the trench: 55 km / depth to the 25 

slab/mantle interface: 13km), Fantangisña (62 km / 14 km) and Asùt Tesoru (72 km / 18 km). Four 26 

different types of ultramafic clasts were recovered: blue serpentinites, lizardite-serpentinites, 27 

antigorite/lizardite- and antigorite-serpentinites. Lizardite-serpentinites are primarily composed of 28 

orange serpentine, forming mesh and bastite textures. Raman and microprobe analyses revealed that 29 

these textures contain a mixture of Fe-rich brucite (XMg ⁓ 0.84) and lizardite/chrysotile. 30 

Antigorite/lizardite- and antigorite-serpentinites record the progressive recrystallization of mesh and 31 

bastite textures to antigorite, magnetite and pure Fe-poor brucite (XMg ⁓ 0.92). Oxygen isotope 32 

compositions of clasts and pore fluids showed that the transition from lizardite to antigorite is due to 33 

the increase in temperature from 200°C to about 400°C within the forearc area above the slab/mantle 34 

interface. Lizardite-, antigorite/lizardite- and antigorite-serpentinites displayed U-shaped chondrite 35 

normalized Rare Earth Element (REE) patterns and are characterized by high fluid mobile element 36 

concentrations (Cs, Li, Sr, As, Sb, B, Li) relative to abyssal peridotites and/or primitive mantle. The 37 

recrystallization of lizardite to antigorite is accompanied by a decrease in Cs, Li and Sr, and an 38 

increase in As and Sb concentrations in the bulk clasts, whereas B concentrations are relatively 39 

constant. Some clasts are overprinted by blue serpentine, often in association with sulfides. Most of 40 

these blue serpentinites were recovered at Yinazao and the uppermost units of Fantangisña and Asùt 41 

Tesoru suggesting alteration in the shallower portions of the forearc, possibly during exhumation of 42 

the clasts. This episode of alteration resulted in a flattening of REE spectra and an increase of Zn 43 

concentrations in serpentinites. Otherwise, no systematic changes of ultramafic clasts chemistry or 44 
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mineralogy were observed with increasing depth to the slab. The samples document previously 45 

undescribed prograde metamorphic events in the shallow portions of the Mariana subduction zone, 46 

consistent with a continuous burial of the serpentinized forearc mantle during subduction. Similar 47 

processes, induced by the interaction with fluids released from the downgoing slab, likely occur in 48 

subduction zones worldwide. At greater depth, breakdown of brucite and antigorite will result in the 49 

massive transfer of fluids and fluid mobile elements, such as As, Sb and B, to the source of arc 50 

magmas. 51 

Keywords: forearc, serpentinites, phase transition, dynamic, geochemistry, subduction zones 52 

1. Introduction 53 

Serpentinization of the forearc mantle in subduction zones is intimately related to the devolatilization 54 

of the downgoing slab. During the onset of subduction (i.e., less than ~80 km depth) volatiles, such as 55 

H2O, C, S, etc., are released from the slab, rise through and interact with the mantle wedge. This 56 

process influences the physical and mechanical properties of the slab/mantle wedge interface (Gerya et 57 

al., 2002; Rüpke et al., 2004; Van Keken et al., 2011), the dynamics of mantle flows (Hilairet and 58 

Reynard, 2009; Reynard, 2013; Wada et al., 2008) and controls deep volatile and redox-sensitive 59 

element cycles (Debret et al., 2018a; Deschamps et al., 2011; Hattori and Guillot, 2007; Ribeiro and 60 

Lee, 2017; Savov et al., 2007, 2005). In addition, serpentinites, either in the slab and/or the mantle 61 

wedge, have the capability to retain large amounts of water (up to 13 wt%) down to 100-200 km and 62 

up to their transformation into chlorite bearing harzburgites (e.g., Ulmer and Trommsdorff, 1995; 63 

Wunder and Schreyer, 1997). However, despite its importance, relatively little is known about the 64 

extent of serpentinization, redox state and chemistry of serpentinized forearc mantle wedges 65 

worldwide. 66 

A common way to study serpentinized forearc mantle wedges is by measuring seismic velocities 67 

(Bostock et al., 2002; Kamimura et al., 2002). Although the geometry of forearcs is highly variable 68 

and strongly controlled by the age of the slab (e.g., Van Keken et al., 2011; Reynard, 2013; Wada et 69 

al., 2008), it is widely assumed that the forearc mantle wedge is highly serpentinized, typically more 70 
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than 50 % (Bostock et al., 2002; Nagaya et al., 2016), at depth ranging from 30 to 80 km. The physical 71 

properties of the mantle wedge serpentinites are often approximated by the behaviour of antigorite 72 

(i.e., the high temperature and pressure form of serpentine). Both modelling and experimental studies 73 

suggest that antigorite should be the dominant phase crystallizing in the forearc mantle (e.g., 74 

Christensen, 2004), but the importance of other serpentine varieties (lizardite and/or chrysotile) and 75 

minerals such as brucite, talc or chlorite, is poorly constrained (Reynard, 2013). 76 

The buoyancy of serpentinized peridotites in dense anhydrous peridotites has lead several studies to 77 

propose that the serpentinized forearc mantle (or the so-called “serpentinization channel” along the 78 

slab-wedge interface) may contribute to the exhumation of high pressure terranes in active subduction 79 

zones (e.g., Chemenda et al., 1995; Guillot et al., 2000; Schwartz et al., 2001). This conclusion has 80 

been supported by the common occurrence of serpentinites with eclogitic rocks in mountain ranges. 81 

However, geochemical studies have shown that the forearc mantle wedge constitutes an essential 82 

reservoir for fluid mobile elements and water in subduction zones that must be dragged down by 83 

corner flow to contribute to the elemental and isotope budgets of subduction zone magmas (e.g. Savov 84 

et al., 2005, 2007; Hattori and Guillot, 2007; Deschamps et al., 2011; Ribeiro and Lee, 2017; Debret et 85 

al., 2018a). For example, recent mass balance calculations show that the serpentinized fore-arc mantle 86 

could provide enough water (∼7–78% of the total water injected at the trenches) to account for the 87 

water outfluxes beneath the volcanic arc (Ribeiro and Lee, 2017). Additionally, numerical models by 88 

Nagaya et al. (2016) suggest that convection could develop in serpentinized forearc mantle wedges. 89 

This result is compatible with previous numerical modelling by Honda et al. (2010) indicating that 90 

convective flow can be induced in the forearc wedge mantle when the viscosity of the wedge mantle is 91 

sufficiently low (< ~4 × 10
19

 Pa s
-1

); compatible with estimates for the effective viscosity of antigorite 92 

(Hilairet et al., 2007). The discrepancies between these buoyancy and viscosity-controlled models 93 

emphasize the difficulty in assessing the dynamics of mantle flow in the serpentinized mantle wedge 94 

in subduction zones. 95 

The Mariana forearc is a unique setting to sample and study the serpentinized mantle wedge as 96 

protrusions of hydrated mantle form serpentinite mud volcanoes on the outer forearc of the Izu–97 
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Bonin–Mariana intra-oceanic subduction system (Fryer & Mottl, 1992; Fryer et al., 2012; Taylor & 98 

Smoot, 1984). The mud volcanoes are composed of serpentinite muds with embedded ultramafic clasts 99 

from the forearc mantle as well as mafic clasts from the subducting crust, originating from depths 100 

greater than 15 km (Fryer et al., 2000; Maekawa et al., 1993). Here we take advantage of the recent 101 

International Ocean Discovery Program (IODP) Expedition 366 to study serpentinized ultramafic 102 

clasts contained in the serpentinite muds of three mud volcanoes: Yinazao (formerly known as Blue 103 

Moon), Fantangisña (Celestial) and Asùt Tesoru (Big Blue; Fryer et al., 2018). We show that clasts 104 

from the Mariana forearc mantle are variably serpentinized and preserve various stages of lizardite 105 

recrystallization into antigorite, brucite and magnetite. Oxygen isotope chemistry and thermometry of 106 

the clasts and pore fluids show that the transition from lizardite to antigorite is likely to occur between 107 

200 to 400°C, in good agreement with thermodynamic calculations (Evans, 2004) and field 108 

observations in alpine meta-ophiolites (Schwartz et al., 2013). No obvious correlation between the 109 

distance of the mud volcanoes to the trench and the lizardite to antigorite transition was observed. The 110 

absence of correlation suggests that complex convective flows of material occur within the mantle 111 

wedge area.   112 

2. Geological setting 113 

The non-accretionary Mariana subduction system, involving the subduction of the Mesozoic Pacific 114 

plate below the Philippine Sea plate, is located in the Western Pacific Ocean (Fig. 1). At the surface, 115 

the Mariana forearc is characterised by multiple horst and graben structures that developed under 116 

extensional stress caused by a rapid slab roll-back (Fryer, 1996; Harry and Ferguson, 1991). As a 117 

result, numerous serpentinite mud volcanoes are situated at varying distances from the trench (Fig. 1). 118 

They are formed by the eruption of mud flows consisting of unconsolidated serpentinite mud and 119 

containing variably serpentinized ultramafic clasts, as well as minor amounts of recycled Pacific plate 120 

and of Philippine Sea plate materials (Fryer et al., 2018; Fryer, 2012; Maekawa et al., 1993; Pabst et 121 

al., 2011). The serpentinite muds are derived from the forearc mantle where slab derived fluids interact 122 

with ultramafic lithologies and are buoyantly transported to the seafloor (Fryer, 2012 and reference 123 

therein). IODP Expedition 366 drilled at Yinazao (formerly known as Blue Moon), Fantangisña 124 
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(Celestial) and Asùt Tesoru (Big Blue) serpentinite mud volcanoes, which are located at distances of 125 

55 km, 65 km and 70 km to the trench, respectively. Two additional serpentinites mud volcanoes, 126 

namely South Chamorro (78 km) and Conical (86 km from the trench), were previously drilled during 127 

Ocean Drilling Leg 195 and 125, respectively, and data from these sites will be incorporated here. 128 

Yinazao is the closest to the trench. It lies at 15°43’N latitude and 147°11’E longitude (Fig. 1), at 129 

about 13 km above the subducting slab (Fryer et al., 2018; Hulme et al., 2010; Oakley, 2008). 130 

Previous studies estimated the temperature of the slab/ mantle interface below Yinazao at about 80°C 131 

(Oakley, 2008; Hulme et al., 2010). Drilling took place at the flank (Site U1491) and the summit (Site 132 

U1492) of this mud volcano (Fryer et al., 2018). The recovered cores consisted mainly of an 133 

alternation of an uppermost altered units of red-brown pelagic mud, ranging from a few cm to up to 4 134 

m thick, and units of green and blue-grey serpentinite pebbly mud (Fig. 2). The red-brown pelagic 135 

units are interpreted as paleo-seafloor horizons altered in contact with seawater between two mud 136 

eruptions (Fryer et al., 2018). Each unit contains between 5 and 10% ultramafic clasts, most of which 137 

are fully serpentinized. Clasts recovered from the upper unit are affected by brown weathering and can 138 

display a high degree of carbonation (up to 80%, Figs 2a-b, Appendix A); whereas, clasts from the 139 

lower units are characterised by a dark blue colour (Figs 2c-d) and are frequently crosscut by mm-140 

wide chrysotile veins with crack-seal like textures, indicative of a late-stage alteration event. 141 

Fantangisña mud volcano is located to the north of Yinazao, at approximately 16°32’N and 142 

147°13’E (Fig. 1). It is situated at about 14 km above the slab (Hulme et al., 2010). The temperature of 143 

the slab/ mantle interface below Fantangisña mud-volcano was estimated at about 150°C (Fryer et al., 144 

2018; Hulme et al., 2010). During IODP Expedition 366, both the summit (Site U1497) and the flank 145 

(Site U1498) of this mud volcano were drilled (Fryer et al. 2018). The recovered cores consisted of 146 

alternating silt- or sand-rich layers containing ultramafic clasts with a brown weathering colour, and of 147 

green and/or blue-grey serpentinite pebbly mud embedding a large amount (about 20%) of dark blue 148 

ultramafic clasts (Figs 2c-d) that are predominantly harzburgites and dunites displaying a wide degree 149 

of serpentinization degree, from about 50 to 100%.  150 
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Asùt Tesoru mud volcano lies to the north of Fantangisña, at approximately 18°06 N and 147.06 E 151 

(Fig. 1). It is located at about 18 km above the slab (Hulme et al., 2010). Temperatures at the 152 

slab/mantle interface are estimated at about 250°C (Fryer et al., 2018; Hulme et al., 2010). Three sites 153 

were drilled on the flanks (Sites U1493, U1494 and U1495) and one at the summit (Site U1496; Fryer 154 

et al., 2018). The uppermost recovered units consist of pelagic mud and fine grained sandstone or 155 

siltstone containing weathered ultramafic clasts. Lower units are mainly composed of green to blue-156 

grey serpentinite mud with 2 to 15% lithic clasts mainly consisting of variably serpentinized 157 

harzburgites and dunites with a dark blue colour (Figs 2c-d; serpentinization degree from 30 to 100%).  158 

3. Petrology of the ultramafic clasts 159 

Forty three ultramafic clasts were examined for their petrography onshore (see Appendix B for sample 160 

IODP full names, locations and classification). The clasts are variably serpentinized harzburgites and 161 

dunites of several centimetres to tens of centimetres long (Fig. 2). Many clasts preserve different 162 

serpentinization stages reflecting various episodes of fluid infiltration within the mantle wedge. 163 

3.1 Identification of serpentine varieties  164 

The mineralogy of the ultramafic clasts was characterized by combining electron microprobe analyses 165 

and Raman spectroscopy. These methods have been used to differentiate between serpentine varieties 166 

and co-existing brucite (e.g., Debret et al., 2013; Groppo et al., 2006; Schwartz et al., 2013; 167 

Schwarzenbach et al., 2016). In situ major element analyses were performed with a CAMECA SX 100 168 

electron microprobe at the Laboratoire Magmas et Volcans (Clermont-Ferrand, France). Operating 169 

conditions of 15 kV accelerating voltage, a sample current of 15 nA and a counting time of 10 170 

s/element were used, except for Ni (20 s). Microprobe analyses are given in Appendix C. Raman 171 

spectroscopy was performed at the University of Cambridge (UK). Raman spectra were collected in 172 

the 150–1300 cm
−1

 and 3500-3800 cm
−1 

spectral ranges using a confocal Labram HR300 Raman 173 

spectrometer (Horiba Jobin Yvon) of 300 mm focal length equipped with a holographic grating of 174 

1800 gr mm
−1

 coupled to a Peltier cooled front illuminated CCD detector, 1024×256 pixels in size. 175 

This configuration allowed for a spectral resolution of about 1.4 cm
−1

 per pixel. The excitation line at 176 
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532 nm was produced by a diode-pumped solid state laser (Laser Quantum) focused on the sample 177 

using an Olympus 50 X objective (0.42 N.A.). Spectra were corrected from a linear baseline using the 178 

fitting software Peakfit. The laser power was set at energies ranging from 5 mW to 500 μW in order to 179 

avoid degradation of serpentine or oxide minerals (Debret et al., 2013; Debret et al., 2014; Faria & 180 

Vena, 1997), and the sample surface was checked after each analysis. In order to properly define the 181 

different serpentine varieties, spectra of lizardite, chrysotile, antigorite and brucite were selected as 182 

references (Appendix D). 183 

3.2 Serpentinization at Yinazao mud volcano 184 

Close to the seafloor, the clasts mainly consisted of carbonated breccia made of dusty calcite and/or 185 

aragonite embedding serpentinite fragments of various sizes, from 100 µm to several centimetres (Figs 186 

2a-b, 3a). The degree of carbonation varies from 20 to 80% in the different clasts. Serpentine minerals 187 

display pseudomorphic mesh and bastite textures that replace mantle olivines and orthopyroxenes, 188 

respectively. Large veins of chrysotile with crack seal like textures crosscut mesh and bastite textures. 189 

The rims of many clasts are affected by an episode of late alteration, consisting of brownish clay 190 

minerals, that overprints previous textures (Fig. 2b; Appendix A). This late alteration stage is in 191 

accordance with results from other studies on Conical and South Chamorro mud volcanoes drilled 192 

during previous ODP expeditions (e.g., Kahl et al., 2015). 193 

In the deeper units, clasts consist mainly of blue serpentine, spinel and sulfides with rare 194 

hydrogrossular and relicts of mantle olivine and orthopyroxene (subsequently called ‘blue 195 

serpentinites’; Figs 3b-d). Spinels are homogeneous and display euhedral shapes. They can be 196 

surrounded by ≤ 50 µm wide coronas of magnetite. Spinel cores have XCr (Cr / [Cr + Al]) of 53-54 197 

and XMg (Mg / [Fe + Mg]) of 54-57 (Fig. 4). Serpentine forms mesh and bastite textures, replacing 198 

olivine and orthopyroxene, and display a pale blue colour in plane polarized light (Figs 3b,c). The 199 

Raman spectra of blue serpentine are characterized by peaks at 225, 381, 525, 692, 1095 and 3697 cm
-200 

1
 characteristic of chrysotile. Brucite is intergrown with chrysotile at the microscale as indicated by 201 

additional Raman peaks at 280, 440, 3643 and 3650 cm
-1

 (Fig. 3b). Blue serpentine compositions are 202 

characterized by XMg of 0.85 to 0.94, and SiO2 and FeO contents ranging from 17.9 to 40.3 wt% and 203 
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from 4.2 to 11.3 wt%, respectively (Fig. 5). The most Si-rich analyses display a broad match to 204 

serpentine mineral stoichiometry, whereas regression analysis of the whole data set suggests variable 205 

proportions of Mg-Si-serpentine and Si-free, Fe-rich brucite endmembers (Fig. 5). The low Si analyses 206 

can be attributed to the presence of Fe-brucite at nanoscale, as this mineral has a low XMg (⁓0.84 as 207 

shown by regression analyses in Fig. 5a) relative to serpentine and does not incorporate silica (see also 208 

Kahl et al., 2015; Schwarzenbach et al., 2016). Bastite textures are occasionally associated with 209 

roundish hydrogrossular crystals of about 50 µm width. Several studies have reported the presence of 210 

hydrogrossular in different serpentinization environments and this has, in most cases, been attributed 211 

to an excess in Al during the final stages of serpentine growth after pyroxene (e.g., Beard et al., 2009).  212 

The centre of mesh and bastite textures is often associated with large opaque aggregates of ⁓200 213 

µm width (Figs 3b,c). These aggregates are composed of lamellar minerals associated with framboidal 214 

Fe-sulfides (pyrite), ranging in size from 0.5 to 2 µm, formed inside the intergranular porosity (Fig. 215 

3d). Raman analyses of the lamellar minerals show three main peaks at 280, 440 and 3639 cm
-1

 216 

corresponding to brucite, with four small additional peaks at 369, 521, 689 and 3689 cm
-1

 suggesting 217 

the presence of small amounts of serpentine (Fig. 3b). Occasionally, 50 to 200 µm wide veins 218 

consisting mainly of euhedral pyrite crosscut the serpentine textures (Fig. 3c).  219 

3.3 Serpentinization at Fantangisña and Asùt Tesoru mud volcanoes 220 

Clasts recovered from Fantangisña and Asùt-Tesoru mud volcanoes display similar textures to each 221 

other. Samples from the uppermost units are also affected by sub-surface alteration such as clay 222 

mineral crystallization and carbonation. However, in contrast to Yinazao, the formation of blue 223 

serpentine and sulfides was mainly observed close to the seafloor at Fantangisña and Asùt Tesoru. The 224 

Blue serpentine can either completely replace former textures or be limited to clast rims (Fig. 2b; 225 

Appendix A). In lower units, three different types of ultramafic clasts have been identified (Figs 2c-d; 226 

6-8); their distribution appears to be random within the mud volcanoes (see Appendix B for more 227 

details): 228 
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(1) The first group (lizardite-rich serpentinites, referred to as Liz-serpentinites from here on) 229 

corresponds to variably serpentinized peridotites that can preserve mantle minerals (olivine, 230 

orthopyroxene, spinel and rare clinopyroxene). These Liz-serpentinite clasts were the most commonly 231 

reported during previous ODP expeditions, i.e. in South Chamorro and Conical mud volcanoes (e.g., 232 

D’Antonio and Kristensen, 2004; Savov et al., 2005, 2007; Kahl et al., 2015). Olivine XMg and NiO 233 

contents range from 0.91 to 0.93 and from 0.37 to 0.44 wt%, respectively, whereas MnO contents are 234 

below 0.1 wt%. Orthopyroxene is characterized by Cr2O3 and Al2O3 contents ranging from 0.1 to 1.88 235 

wt% and 0.1 to 0.5 wt%, respectively. Spinel relicts have euhedral shapes with dark cores and narrow 236 

(< 100 µm) lighter rims that correspond to a compositional zoning from Mg and Al-rich cores (XMg = 237 

0.30 - 0.59; XCr = 0.51 – 0.95) to Cr-rich rims (XMg ⁓ 0; XCr ⁓ 1; Fig. 4). Small magnetite crystals 238 

are present at the boundary between serpentine and spinel. The serpentinization degrees of the clasts 239 

vary from about 30 to 90%. In slightly serpentinized clasts, serpentine crystallizes as brownish veins 240 

of 20 to 300 µm width, with regular shape, crossing olivine and orthopyroxene (Fig. 6a). Raman 241 

spectra indicate mixtures of brucite and lizardite and/or chrysotile inside the veins. Serpentine fully 242 

replaces olivine and orthopyroxene by forming mesh and bastite textures where the local 243 

serpentinization degree is > 60 %. No magnetite was observed in the mesh centres. Serpentine 244 

compositions are characterized by low SiO2 (31.8 - 40.6 wt%), XMg (0.88 – 0.95) and high FeO (3.5 – 245 

8.1 wt%; Fig. 5) suggesting variable proportions of Fe-brucite and serpentine at microscale. Bastite is 246 

associated with amphibole minerals, which form pale green needles about 50 µm in length. Rare 247 

magnetite grains have been observed in these clasts; they crystallize mainly in the centre of brucite 248 

veins of 20 to 200 µm width crossing mantle minerals, lizardite veins, mesh or bastite textures (Fig. 249 

6b). Towards the rims, the brucite + magnetite veins are surrounded by a corona of small antigorite 250 

lamellae, about 30 µm in length. 251 

(2) The second group (antigorite-/lizardite-rich serpentinites, referred as Atg/Liz-serpentinites 252 

from here on) corresponds to highly serpentinized peridotites (serpentinization degree > 70%) 253 

displaying mesh and bastite textures associated with antigorite (Fig. 7). Few primary mantle spinel 254 

relicts have been observed. XMg and XCr of spinel range from 0.19 to 0.39 and from 0.63 to 0.81, 255 
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respectively. Spinel frequently displays thin, about 50 µm wide, coronas of chromite (XCr > 0.9) and 256 

magnetite toward the rim (Fig. 4). Serpentine mesh centres are often several hundred micrometres in 257 

size and characterised by a homogenous grey colour with weak birefringence and occasionally 258 

undulatory extinction. Raman spectra of the mesh and bastite textures denote mixtures between 259 

lizardite (or chrysotile) and antigorite, with pronounced peaks at 1044 and 3700 cm
-1

 and at 1100 and 260 

3685 cm
-1

, corresponding to antigorite and lizardite, respectively (Fig. 7a). The mesh rims are 261 

composed of antigorite needles associated with thin veinlets of pure brucite and magnetite in their 262 

centres (Fig. 7a). Chemical compositions of serpentine minerals are homogeneous throughout the 263 

samples. They are characterized by higher SiO2 (39.8 – 45.4 wt%) and XMg (0.92-0.97) and lower 264 

FeO (1.9-5.2 wt%) relative to serpentine/brucite textures in the Liz-serpentinites (Fig. 5). This 265 

suggests the absence of brucite at microscale. The amount of antigorite is highly variable from one 266 

sample to another, varying from about 40 to 80 modal %. The serpentinites are crosscut by 200 to 500 267 

µm wide veins of brucite and magnetite (Fig. 7b). Mesh and bastite textures in contact with these veins 268 

are recrystallized to antigorite lamellae and needles about 30 µm in length. 269 

(3) The third group corresponds to antigorite-bearing serpentinites (Atg-serpentinites from here on) 270 

mainly made of antigorite lamellae, about 50 µm long, with interstitial brucite and magnetite (Fig. 8). 271 

The existence of antigorite bearing clasts have also been reported at Conical and South Chamorro mud 272 

volcanoes (e.g., Alt and Shanks, 2006; Murata et al., 2009). Antigorite have higher SiO2 contents (42.2 273 

- 44.9 wt%) and XMg (0.96-0.99) and lower FeO contents (1.2-3.2 wt%) relative to serpentine in the 274 

Liz- or Atg/Liz-serpentinites (Fig. 5). Brucite has crystallized as millimetre-sized patches containing 275 

euhedral magnetite grains about 200 µm in width (Fig. 8). Brucite has MgO and FeO contents ranging 276 

from 63.3 to 64.9 wt% and 9.7 to 9.9 wt%, respectively, and an average XMg of 0.92, which is 277 

significantly higher than that of the Fe-Brucite in Liz-serpentinites (XMg ⁓ 0.84, Fig. 5). The Atg-278 

serpentinites are characterized by the presence of euhedral hydro-andradite crystals that display a 279 

diamond shape and contain numerous inclusions of magnetite. The crystallization of andradite in 280 

serpentinites has been observed in several settings (e.g. Frost, 1985) and can be attributed to a low 281 

silica activity during alteration (Frost & Beard, 2007). Magnetite is abundant throughout the samples. 282 
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4. Methods 283 

4.1 Oxygen isotope geochemistry  284 

4.1.1 Mineral separates 285 

The oxygen isotope compositions of serpentine and magnetite mineral separates were measured at the 286 

University of Texas at Austin using a ThermoElectron MAT 253 mass spectrometer. Serpentinite 287 

samples were crushed and handpicked under a binocular microscope in order to visually assess 288 

mineral separate purity. In many samples, serpentine and magnetite were extensively intergrown and 289 

pure magnetite could not be separated, therefore most samples could not be confidently analysed for 290 

the 
18

O value of magnetite. Oxygen isotope ratios were determined on ~ 2.0 mg of mineral separates 291 

using the laser fluorination method of Sharp (1990). Standard UWG-2 (
18

Ogarnet = +5.8‰; Valley et 292 

al., 1995) and in-house standard Lausanne-1 (
18

Oquartz = +18.1‰) were analysed to verify precision 293 

and accuracy. All 
18

O values are reported relative to SMOW, where the 
18

O value of NBS-28 is 294 

+9.7‰. The error on 
18

O values is ±0.1‰, based on the long-term average of standard analyses. 295 

4.1.2 Pore fluids 296 

Whole-round (WR) core samples were taken immediately after core sectioning on the deck for the 297 

subsequent extraction of interstitial (pore) water (IW). The length of the WR core taken for IW 298 

analyses varied from 10 cm in the upper units, to 40 cm in the deeper units where the volume of 299 

extracted IW was limited. Although this sacrificed a large amount of core material, this was the only 300 

way to get sufficient volume of pore fluids for the deeper samples, and only core sections which 301 

appeared to be highly homogenous were used. Typically one WR per section was collected between 0 302 

and 10 mbsf, and 2 WR were selected every 10 m of depth from 10 mbsf to total depth of the core. 303 

Whole-round samples were processed in a nitrogen filled glove-bag after cooling in a refrigerator for 304 

about one hour. First the cored material was extruded from the core liner, then portions of the material 305 

that were potentially contaminated by seawater and sediment smearing were removed by scraping the 306 

core’s outer surface with a spatula. For advanced piston (APC) cores about 0.5 cm of material from 307 

the outer diameter and the top and bottom faces was removed. In contrast, material recovered by 308 
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extended core barrel (XCB) coring required additional removal of material, and as much as two-thirds 309 

of the sediment was removed from each WR sample. The remaining inner core of uncontaminated 310 

material (~150–300 cm
3
) was placed into a titanium squeezer (modified after Manheim and Sayles, 311 

1974) and compressed using a laboratory hydraulic press to extract pore water, using a total pressure 312 

up to 30 MPa. Fluids extracted from the compressed sediment sample were filtered through a pre-313 

washed Whatman No. 1 filter situated above a titanium mesh screen. Approximately 10-80 mL of IW, 314 

depending on the length of the WR being processed, was collected in acid-cleaned plastic syringes 315 

attached to the squeezing assembly and filtered again through a Gelman polysulfone disposable filter 316 

(0.45 µm). After extraction, the squeezer parts were thoroughly cleaned with shipboard water, rinsed 317 

with de-ionized water, and dried. Pore fluids were syringe filtered into small, pre-cleaned (acid 318 

washed), Nalgene plastic vials, capped and then immediately flash frozen in liquid nitrogen to prevent 319 

evaporation. 320 

Samples were measured via a Thermo Gas Bench II connected to a Thermo Delta Advantage mass 321 

spectrometer in continuous flow mode at Union College (Schenectady, New York – sample analyses 322 

are displayed in Appendix E). Three inhouse laboratory standards were used for isotopic corrections, 323 

and to assign the data to the appropriate isotopic scale using linear regression. These standards were 324 

calibrated directly to VSMOW (0.0‰) and SLAP (-55.50‰). The inhouse standards have δ
18

O values 325 

that range from -0.6‰ to -16.52‰. The combined uncertainty (analytical uncertainty) for δ
18

O of IW 326 

samples is ± 0.02‰ (SMOW), based on 8 internal tap water standards over two analytical sessions. 327 

4.2 Bulk rock major and trace elements analyses 328 

A suite of 25 representative serpentinized ultramafic clasts were analysed for major and selected trace 329 

elements by Inductively Coupled Plasma Optical Emission Spectrometry (Thermo ICP-OES Icap 330 

6500) at the SARM (Service d’Analyses des Roches et des Minéraux Nancy, France – Appendix F). 331 

This sample set includes 5 Blue-serpentinites recovered at Yinazao (Site U1492, samples: M2, M3, 332 

M5, M6, M7), 1 Blue-serpentinite (Site U1496, sample: M24), 4 Liz-serpentinites (Site U1493, 333 

samples: TSB55, M9, M10; Site U1496, sample: M19), 2 Atg/Liz-serpentinites (Site U1495, samples: 334 

M12, M13), 4 Atg-serpentinites (Site U1495, samples: M14, M15, M16, M17) and 1 Brucitite (Site 335 
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U1496, sample: M20) recovered at Asùt Tesoru, 2 Blue-serpentinites (Site U1497, sample: M30; Site 336 

U1498, sample: M38), 2 Atg/Liz-serpentinites (Site U1497, sample: M32; Site U1498, sample: M45) 337 

and 3 Atg-serpentinites (Site U1497, samples: M50, M51, TSB102) recovered at Fantangisña. Sample 338 

digestions for major (SiO2, Al2O3, Fe2O3, MnO, MgO, CaO, Na2O, K2O, TiO2) and trace elements 339 

(Co, Cr, Ga, Ge, Ni, Sc, V, Zn, Cu) were performed on LiBO2 fluxed fusions following the procedures 340 

described by Carignan et al. (2001). Boron concentrations were measured by spectrophotometric 341 

determination at the SARM. Samples were dissolved by fusion with anhydrous sodium carbonate. The 342 

reproducibility of the standard was better than 2% for major elements, 5% for Co, Cr, Ga, Ge, Ni, Sc, 343 

V, Zn, B and Li, and 10% for Cu based on repeated analyses of UB-N (serpentinite standard from the 344 

Centre de Recherches Pétrographiques et Géochimiques (CRPG) of Nancy, France). The analyses 345 

were accurate within 1-5% for SiO2, Al2O3, Fe2O3, MnO, MgO, CaO, Na2O, K2O and within 1-10% 346 

for TiO2 based on repeated analyses of U.S. Geological Survey, CRPG and Geological Survey of 347 

Japan standards BIR-1, UB-N and JP-1, and within 1-10% for Co, Cr, Ga, Ge, Ni, Sc, Cu, Zn, B, Li 348 

and better than 15% for V based on UB-N analyses (see Appendix F for comparison with standard 349 

preferred values).   350 

A subset of 20 serpentinites was analysed for rare earth elements (REE), Y, Sr, Li, Rb, Cs, Cd, Pb, 351 

As, Sb, Ba, U, Th, Nb, Ta, Hf, Zr, V, Ga, Cu and Zn using a High Resolution Sector Field ICP-MS 352 

(Element XR) at the Vrije Universiteit Brussel (VUB, Belgium - Appendix F). This sample subset 353 

includes 4 Blue-serpentinites recovered at Yinazao (site U1492, samples: M2, M3, M6, M7), 1 Blue-354 

serpentinite (site U1496, sample: M24), 3 Liz-serpentinites (site U1493, samples: TSB55, M9, M10), 355 

2 Atg/Liz-serpentinites (site U1495, samples: M12, M13), 4 Atg-serpentinites (site U1495, samples: 356 

M14, M15, M16, M17) and 1 Brucitite (site U1496, sample: M20) recovered at Asùt Tesoru, 2 Blue-357 

serpentinites (site U1497, sample: M30; U1498, sample: M38) and 2 Atg/Liz-serpentinites (site 358 

U1497, sample: M32; site U1498, sample: M45) recovered at Fantangisña. Samples were digested 359 

with a 1:1 mixture of HCl and HF for 4 days in par bombs. The samples were analysed in low 360 

resolution mode after dilution in 2% HNO3 of 500 for most of trace elements and in medium 361 

resolution mode after dilution in 2% HNO3 of 2000 for Cu, Zn, As, Ba and Pb. The external precision 362 
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and accuracy were determined by analysing known ultramafic rock standards (UB-N from the CRPG 363 

Nancy, JP-1 from Geological Survey of Japan, PCC-1 and DTS-2b from US Geology Survey). One of 364 

the challenges of measuring refractory peridotites is their very low abundance of many trace elements 365 

(e.g., REE, HFSE, U, Th, Pb, As). As a consequence, there is a lack of precise and accurate data for 366 

reference materials of refractory peridotites (PCC-1, JP-1 and DTS-2b). On the basis of UB-N 367 

analysis, reproducibility is better than 10% for most of the trace elements and between 10 and 15% for 368 

Hf and Th (see Appendix F). The values obtained for rock standards UB-N, PCC-1, JP-1 and DTS-2b 369 

during this study are reported in Appendix F and are in good agreement with previously published data 370 

within a 2 standard deviation error. 371 

5. Results and discussion of bulk rock oxygen isotope geochemistry 372 

Results of whole rock analyses are given in Appendix F and are in good agreement with previous 373 

studies of serpentinite clasts from nearby seamounts (South Chamorro and Conical; e.g., Kodolanyi et 374 

al., 2011; Parkinson & Pearce, 1998; Savov et al., 2005, 2007; Fig. 9) and with the shipboard analyses 375 

(Fryer et al., 2018). Relatively low Al2O3/SiO2 (<0.03) and high MgO/SiO2 (>0.98) of the ultramafic 376 

clasts are consistent with a refractory protolith, i.e., dunite or pyroxene-poor harzburgite (e.g., Godard 377 

et al., 2008). The high loss on ignition values (>15 wt%) and low SiO2 contents (<36 wt%) of some 378 

samples are in agreement with the crystallization of high amounts of sulfides (e.g. blue serpentinites) 379 

and/or brucite during peridotite serpentinization. 380 

Chondrite-normalized REE plots are presented in Fig. 8a. Overall, the studied serpentinites are 381 

depleted in REE concentrations compared to chondrite values, and LREE (Light REE, 0.002 to 0.143 382 

chondritic values) are more depleted than HREE (Heavy REE, 0.03 to 0.3 times chondritic values). 383 

Among the recovered clasts, two different patterns are observed. Group 1 corresponds to most of the 384 

blue serpentinite samples. They are characterized by relatively flat REE patterns with slightly higher 385 

concentrations of HREE compared to LREE (LaN/YbN = 0.3-0.6; GdN/YbN = 0.2-0.5; N: Chondrite 386 

normalized). This group reflects the pattern of the serpentinite mud erupted at the mud volcanoes (e.g., 387 

Savov et al., 2004; Fig. 10a) and may therefore reflect late stage re-equilibration between the mud and 388 

the ultramafic clasts.  389 
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Group 2 includes blue-, Liz-, Atg/Liz- and Atg- serpentinites. These samples display U-shape REE 390 

patterns, with depletion in the MREE (Middle Rare Earth Elements) relative to the LREE (LaN/YbN = 391 

0.03-2) and HREE (GdN/YbN = 0.02-0.4; Fig. 10a), and also possess positive Eu anomalies (Eu/Eu* = 392 

EuN/[(SmN+GdN)/2]). The LREE concentrations progressively increase from the Liz-serpentinites 393 

(LaN/YbN = 0.04-0.13) to the Atg/Liz- (LaN/YbN = 0.12-2) and Atg-serpentinites (LaN/YbN =0.1-0.4). 394 

The Eu anomaly is more pronounced in Liz- and Atg/Liz-serpentinites (Eu/Eu* = 0.9-6.8) relative to 395 

Atg-serpentinites (Eu/Eu* = 0.7-1.8). These patterns are similar to those reported in the Conical mud 396 

volcano and have been interpreted as inherited from the peridotite protolith (Parkinson and Pearce, 397 

1998). In Fig. 10b, Group 2 serpentinites are characterized by a strong depletion in most incompatible 398 

elements with respect to primitive mantle. The studied clasts show enrichments in Cs (Csn/Lan > 21; n: 399 

Primitive Mantle normalization) and positive anomalies in U (Un/Thn > 2), Pb (Pbn/Lan > 4), Sr 400 

(Srn/Prn > 2), As, Sb (Asn/Prn > 1500) and Li (Li* > 60, Li* = Li / [Dy/2 + Y/2]).  401 

Variations of fluid mobile elements (FME) and metal concentrations are observed for the different 402 

serpentinite types. The concentrations of As and Sb are lower in Liz-serpentinites (As = 0.7-1.3 ppm; 403 

Sb <0.001 ppm;) compared to Atg-serpentinites (As = 1.5-9.2 ppm; Sb = 0.03-0.21 ppm; B = 10-97 404 

ppm), whereas Li (from 4-6 ppm to 0.4-0.8 ppm), Sr (from 1-8.5 ppm to 0.1-1 ppm) and Cs (from 405 

0.14-0.22 ppm to <0.01-0.03 ppm) concentrations decrease from Liz- to Atg- serpentintes (Fig. 11). B 406 

and Zn concentrations are relatively constant in Liz- (B = 20-30 ppm; Zn = 35-65 ppm), Atg/Liz- (B = 407 

48-59 ppm, Zn = 48-55 ppm) and Atg-serpentinites (B = 10-49 ppm; Zn = 36-52 ppm). It should be 408 

noted that boron (B) is highly enriched on all the studied samples relative to primitive mantle (BPM = 409 

0.19 ± 0.02 ppm, PM: Primitive Mantle; Marschall et al., 2017). Of all samples, blue serpentinites are 410 

characterized by the highest Zn (51-92 ppm), and highly variable Sr (2-28 ppm) and B (7-250 ppm) 411 

concentrations (Fig. 11c; Appendix F). It is unknown whether or not these elements are solely carried 412 

by serpentine minerals, which can incorporate these elements in its structure (e.g., Pabst et al., 2011; 413 

Debret et al., 2017), or by other accessory (micro- to nano-) phases (e.g., sulfides, spinels, hydro-414 

garnets…). 415 
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Eight serpentine separates have δ
18

OSrp values of 5.8 to 8.3‰ (Table 1), overlapping with the range of 416 

analyses from previous Mariana mud volcano studies (6.5 to 10.8‰, reported by Alt & Shanks, 2006; 417 

5.8 to 8.5‰ by Sakai et al., 1990; 6.1 to 10.5‰ by Kahl et al., 2015), and one magnetite separate has 418 

δ
18

OMgt value of 1.8‰ (Table 1), in good agreement with Alt and Shanks (2006) who reported δ
18

OMgt 419 

values of 0 to 2‰ in antigorite-rich samples. No obvious changes of δ
18

OSrp are observed with 420 

increasing distance from the trench in this study (δ
18

Osrp [Yinazao] = 6.4 ‰; δ
18

OSrp [Fantangisña] = 421 

8.3 ‰; δ
18

Osrp [Asùt Tesoru] = 5.8-8.3 ‰) or in previous studies (δ
18

Osrp [S. Chamorro] = 6.4-10.5 ‰; 422 

δ
18

Osrp [Conical] = 6.1-10.8 ‰; Alt and Shanks, 2006; Kahl et al., 2015; Sakai et al., 1990). However, 423 

systematic variations of δ
18

OSrp relative to sample mineralogy and in pore fluids are observed. Blue 424 

serpentine displays δ
18

O values ranging from 6.4 to 7.4‰, whereas higher δ
18

O values are observed in 425 

Liz-serpentinites (δ
18

Oserp 6.8 to 7.6‰) compared to Atg/Liz-serpentinites (δ
18

Osrp. 5.8 to 6.1‰). 426 

Antigorite in the Atg-serpentinites records δ
18

OSrp values varying from 7.1 to 8.3‰, whereas 427 

associated magnetite has a δ
18

OMgt value of 1.8 ‰. Pore fluid δ
18

O values range from -1.39 to -0.14‰ 428 

in Yinazao, from -0.03 to 0.25‰ in Fantangisña and from 1.73 to 1.97‰ in Asùt Tesoru. Although 429 

highly variable with depth, these values suggest an increase in the δ
18

O values of the pore fluid from 430 

shallow Yinazao (mean δ
18

Ofluid = -0.90‰, n = 10) to the deeper Fantangisña (mean δ
18

Ofluid = 0.11‰, 431 

n = 6) or Asùt Tesoru (mean δ
18

Ofluid = 1.83‰, n = 4; Fig. 12). These values are significantly lower 432 

than those reported for South Chamorro (mean δ
18

Ofluid = 2.5‰) and Conical (mean δ
18

Ofluid = 4‰; 433 

Mottl et al., 2003), which are further from the trench. 434 

6. Reconstructing forearc serpentinization conditions 435 

Textural relationships between the different serpentine generations allow the reconstruction of a semi-436 

quantitative temperature evolution of the serpentinization conditions within the Marianas forearc 437 

mantle wedge and thus a discussion of subduction dynamics. Forearc mantle wedge peridotites are 438 

former sub-arc peridotites that underwent extensive partial melting before being dragged into the 439 

forearc by mantle convection (e.g. Parkinson & Pearce, 1998). These peridotites are hydrated by slab-440 

derived fluids and progressively transformed into serpentinites. The formation of early brown lizardite 441 

bearing veins crosscutting olivine and orthopyroxene in Liz-serpentinites (Fig. 6a) constitutes the first 442 

stage of the forearc mantle wedge hydration and serpentinization. These textures have been observed 443 
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at the Fantangisña and Asùt Tesoru mud volcanoes as well as at the South Chamorro and Conical mud 444 

volcanoes during previous IODP expeditions (e.g. Kahl et al., 2015). The presence of significant 445 

amounts of brucite in Liz-serpentinites (Figs 5, 6a) can be attributed to the refractory composition of 446 

forearc mantle peridotites. In Mg-rich systems and at low-temperatures (e.g., Klein et al., 2014), the 447 

serpentinization of olivine results in magnesium excess allowing brucite precipitation: 448 

(1) 2 Fe0.15Mg1.85SiO4 + 3 H2O = Fe0.2Mg0.8OH2 + Fe0.1Mg2.9Si2O5(OH)4 449 

 Olivine + Water = Fe-brucite + Lizardite  450 

Here the XMg of brucite is assumed to be 0.8 based on linear regression of microprobe analyses (Fig. 451 

5). Although lizardite and brucite can coexist over a large range of temperatures during the 452 

serpentinization process, the absence of magnetite during brown serpentine crystallization suggests 453 

rather low serpentinization temperature (< 200°C; Bonnemains et al., 2016; Klein et al., 2014). 454 

Assuming equilibria between lizardite and associated pore fluids, serpentine crystallisation 455 

temperatures (Table 1) were calculated based on the serpentine–water oxygen isotope fractionation 456 

from Saccocia et al. (2009). In agreement with petrographic observation, the temperature estimates of 457 

lizardite crystallization vary between 203 and 211°C (Table 1). It should, however, be noted that we 458 

cannot exclude an intergrowth of the serpentine separates with microscale brucite; such impurities 459 

would then lead to an overestimation of the calculated temperatures, as discussed by Alt and Shanks 460 

(2006). The crystallization temperatures estimates must therefore be considered as maxima. 461 

The crystallization of antigorite at the expense of lizardite-bearing textures has been observed at 462 

Fantangisña and Asùt Tesoru in Atg/Liz-serpentinites and has also been reported at South Chamorro 463 

and Conical mud volcanoes (e.g. Alt and Shanks, 2006). The formation of antigorite corresponds to a 464 

second stage of serpentinization that is accompanied with the precipitation of large amounts of 465 

magnetite and the crystallization of Mg-rich brucite (XMg ⁓ 0.9; Figs 7 and 8). The transition of 466 

lizardite to antigorite in subduction settings is commonly interpreted to result from increasing P-T 467 

conditions during prograde metamorphism (Debret et al., 2013; Evans, 2004; Scambelluri et al., 2004; 468 

Schwartz et al., 2013; Wunder et al., 2001). The δ
18

O values of serpentine minerals crystallizing in 469 
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Atg/Liz-serpentinites indicate crystallisation temperatures of 230-240°C if we assume equilibria 470 

between serpentine and associated pore fluids. Those estimates are however at the lower range of 471 

previous thermodynamic estimates or natural observations that predict the coexistence of lizardite and 472 

antigorite during subduction between about 250-350°C (Evans, 2004; Schwartz et al., 2013). Indeed, 473 

based on combined δD and δ
18

O values of serpentine from Conical ultramafic clasts, Alt and Shanks 474 

(2006) propose that the serpentinizing fluids released by the subducting slab at depth are likely to 475 

increase with temperature and to be progressively enriched in 
18

O (δ
18

Ofluid ⁓ 5.5‰ at 250°C and ⁓ 476 

9.0‰ at 400°C; Fig. 12). Similarly, Sakai et al. (1990) also suggest a slab-derived fluid with a δ
18

O 477 

value of approximately 3.0‰ based on the oxygen and hydrogen isotope composition of Izu and 478 

Mariana forearc serpentinite clasts. In agreement with those studies, we observed a progressive 479 

increase of δ
18

O values of pore fluids with increasing distance from the trench (Fig. 12). However, 480 

pore fluid measurements from Yinazao, Fantangisña or Asùt Tesoru (-1.39 to +1.97 ‰) are always 481 

lower than δ
18

O estimates of slab-derived fluids suggesting that the δ
18

O values of pore fluids are 482 

driven toward to lower values during serpentinization processes occurring within the forearc (Alt and 483 

Shanks, 2006). In agreement with this scenario, the δ
18

OSrp analyses are more or less constant and 484 

enriched in 
18

O (5.8-10.8 ‰; e.g., Alt and Shanks, 2006; Kahl et al., 2015; Sakai et al., 1990; this 485 

study) relative to pore fluids analyses, regardless of the slab depth. Higher δ
18

O values for pore fluids 486 

than those recorded here have been reported by Mottl et al. (2003) for the more distant South 487 

Chamorro (δ
18

Ofluid = 2.5 ± 0.5 ‰) and Conical (δ
18

Ofluid = 4 ± 0.5 ‰) mud volcanoes (Fig. 12). If 488 

these higher pore fluid δ
18

O values are used, temperature estimates are somewhat higher at 243-283°C 489 

for serpentine crystallization in Atg/Liz-serpentinites and therefore in better agreement with previous 490 

estimates of the transition lizardite to antigorite in subduction zones (250-350°C; Schwartz et al., 491 

2013). 492 

The observation of euhedral magnetite embedded in brucite in Atg-serpentinites (Figs 6b, 7b and 8b) 493 

suggests equilibrium with brucite, which in turn formed in equilibrium with antigorite. We therefore 494 

use the δ
18

O values of serpentine–magnetite pairs to estimates the temperature of antigorite 495 

crystallization (thermometer of Wenner & Taylor, 1971 revised by Früh-Green et al., 1996) as 322 to 496 
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409°C. These temperatures overlap or are slightly higher compared to previous estimates of 300–497 

375°C from Alt & Shanks (2006), and suggest that the transition of lizardite to antigorite in the forearc 498 

mantle likely occurs in a temperature range of 200 to 320°C. These estimates are also in accordance 499 

with thermodynamic calculations by Evans (2004) predicting the assemblage antigorite + brucite to be 500 

more stable than lizardite and chrysotile at temperatures > 300°C. 501 

The transition from lizardite to antigorite can follow different reactions (e.g., Evans, 2004; Vils et al., 502 

2011). For example, in a water saturated open system, the transition can be written in a MASH system 503 

as (Evans, 2004): 504 

(2) 16 Mg3Si2O5(OH)4 + 2 SiO2(aq) = 16 Mg3Si2.125O5.31(OH)3.875 + H2O(aq) 505 

Lizardite + SiO2(aq) → antigorite + H2O(aq) 506 

whereby the required influx of SiO2 could be generated by sediment dehydration (e.g. Deschamps et 507 

al., 2011; Schwartz et al., 2013). However, the absence of a SiO2-rich phase (e.g. talc, diopside) and 508 

the high amounts of brucite (Figs 7 and 8) rather suggest a system with low SiO2 activity. The high 509 

amounts of brucite formed during mantle wedge serpentinization are also in line with former studies of 510 

the Mariana forearc (e.g., D’Antonio & Kristensen, 2004; Murata et al., 2009) and mantle wedge 511 

relicts from the Sanbagawa Belt (southwest Japan, Kawahara et al., 2016). These observations suggest 512 

a limited transfer of SiO2 during slab dehydration at shallow depth. 513 

In our samples, the antigorite-forming alteration stage is accompanied by a decrease of FeO in 514 

serpentine and brucite minerals suggesting a redistribution of Fe between Fe-bearing minerals. In 515 

order to account for the production of brucite and magnetite during the recrystallization of lizardite 516 

into antigorite without the addition of SiO2 by fluids, we propose the following equation: 517 

(3) Fe0.2Mg0.8OH2 + Fe0.1Mg2.9Si2O5(OH)4 = Fe0.08Mg0.92(OH)2 + Fe0.04Mg2.78Si2O5(OH)3.64 +  0.04 518 

Fe3O4 + 0.24 H2O + 0.06 H2 519 

Fe-Brucite + Fe-Lizardite = Brucite + Antigorite + Magnetite + H2O + H2 520 
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with the XMg of antigorite and brucite derived from microprobe analyses. It should be noted that this 521 

equation does not take into account the potential incorporation of Fe
3+

 into serpentine minerals 522 

(Andreani et al., 2013; Debret et al., 2014), the potential mobility of Fe in slab derived fluids (Debret 523 

et al., 2016), nor the role of other redox sensitive elements (e.g., C or S). Hence the production of H2 524 

in the equation is speculative. 525 

The studied samples were partly affected by late serpentinization stages characterised by the 526 

crystallization of blue serpentine and sulfides (Fig. 3). If present, this late serpentinization stage 527 

largely replaces former textures, i.e. serpentine or mantle minerals (see Appendix A). This alteration 528 

texture is highly developed in Yinazao, whereas it is limited to the uppermost units of Fantangisña and 529 

Asùt Tesoru mud volcanoes suggesting that the crystallization of blue serpentine mainly occurs as a 530 

late stage of serpentinization. Large amounts of sulfides in some of these samples may indicate 531 

ongoing reduction of sulfates to sulfides through the activity of microbial communities (e.g., Mottl et 532 

al., 2003) during this stage. These sulfides display framboidal textures that are commonly interpreted 533 

as microbe-derived textures formed during bacterially mediated sulfate reduction (e.g., Thiel et al., 534 

1999; Wilkin and Barnes, 1997). However, based on δ
18

O analyses, the temperature estimates of blue 535 

serpentine crystallization vary between 183 and 194°C (Table 1), higher than  those considered 536 

feasible for life (⁓ 122°C; Kashefi and Lovley, 2003). It should be noted that these temperature 537 

estimates are maxima due to brucite/serpentine intergrowths in serpentine textures in the blue-538 

serpentinites, as discussed above. It is thus possible that the blue serpentinites formed at temperatures 539 

lower than 122°C. In addition, recent investigations of Mariana ultramafic clasts show the possible 540 

existence of microbial ecosystems within or below the Mariana mud volcanoes (Plümper et al., 2017). 541 

Microbial activity may therefore have taken place at a similar time to the crystallization of blue-542 

serpentine in these sub-surface environments. 543 

The temperatures of the slab / forearc mantle interface have previously been estimated to be ~80°C 544 

below Yinazao and to be ~250°C below Asùt Tesoru (Hulme et al., 2010), in both cases using pore 545 

water chemistry. These estimates are significantly lower than ours derived from oxygen isotope 546 

thermometry (up to about 400°C) and incompatible with antigorite crystallization in a subduction 547 
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setting (Evans, 2004; Schwartz et al., 2013). Although recent studies have reported the crystallization 548 

of antigorite in an oceanic setting at relatively low temperatures (e.g., Rouméjon et al., 2014), this has 549 

been attributed to Si-metasomatism, possibly following pyroxene serpentinization, and is not 550 

compatible with SiO2 undersaturated systems. The occurrence of antigorite in our samples rather 551 

suggests a progressive increase in temperature leading to the formation of antigorite, magnetite and 552 

Fe-poor brucite at the expense of lizardite. This scenario is compatible with a progressive burial of the 553 

forearc mantle wedge during subduction. 554 

The deep burial of forearc rocks can be due to either corner flow enhanced by the low viscosity of 555 

serpentinite (e.g. Nagaya et al., 2016) or to frictional stresses mechanically disaggregating the slab 556 

surface and eroding the mantle wedge above the décollement zone, incorporating serpentinized mantle 557 

into the aggregated subducting inventory (e.g., King et al., 2006). Both processes could potentially 558 

explain a prograde metamorphic path and the coexistence of ultramafic clasts displaying various 559 

mineralogical assemblages equilibrated at various temperatures in each of the mud volcanoes. The 560 

ultimate mechanism responsible for carrying the clasts to depth remains unclear and requires a detailed 561 

textural investigation, which is beyond the scope of this study. However, retrograde processes leading 562 

to the overprinting of high-temperature serpentine phases by lower-temperature chrysotile (± lizardite) 563 

such as those observed here are interpreted to occur during the rise of the clasts towards shallower 564 

levels in the forearc, e.g., in the mud volcano conduits. The recovered clasts display a high degree of 565 

serpentinization (most of the clasts are serpentinized to almost 100%) compared to geophysical data 566 

based on seismic velocities which suggest serpentinization ≥ 30 % in the forearc (Reynard, 2013). 567 

These conflicting observations can be reconciled if only low density material (i.e., highly 568 

serpentinized parts of the forearc) can be exhumed, probably by buoyancy (e.g. Guillot et al., 2000), 569 

during subduction. 570 

Similar observations of prograde and retrograde metamorphism in the Mariana forearc peridotites 571 

were described by Murata et al. (2009), who recognized lower-temperature chrysotile veins in 572 

antigorite-rich clasts that both pre- and post-date high-temperature antigorite growth. The authors 573 

concluded that this reflected a complex process of tectonic cycling of shallow mantle wedge 574 
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peridotites to depth and then back again to the surface. Several other studies have also noted the 575 

possibility that serpentinite formed in the shallower parts of the subduction zone may be carried 576 

deeper into the subduction zone (e.g., Kawahara et al., 2016; Kerrick & Connolly, 2001; Savov et al., 577 

2005, 2007; Snyder et al., 2005; Tamblyn et al., 2018). This suggests that the serpentinized forearc 578 

mantle wedge can significantly contribute to arc magmas isotope and elemental budget during 579 

subduction (e.g., Ribeiro and Lee, 2017; Debret et al., 2018a). 580 

7. Evolution of forearc mantle wedge composition during subduction 581 

Mariana forearc mud volcanoes are formed by the interaction of slab-derived fluids and forearc 582 

peridotites. The nature of the fluids released during slab dehydration is expect to change considerably 583 

with increasing depth and associated increase of pressure and temperature at depth (Bebout, 2013 and 584 

reference therein). Previous analyses of pore water chemistry of Mariana ultramafic clasts have shown 585 

an increase in K, sulfate, carbonate alkalinity, Na/Cl, B, Mn, Fe, Co, Rb, Cs, Gd/Tb, Eu, and LREE 586 

and a decrease in Ca, Sr, and Y with depth to the slab/mantle interface (Fryer et al., 2018; Hulme et 587 

al., 2010; Mottl et al., 2003). In agreement with these observations, we observed an increase of δ
18

O 588 

values of pore fluids from Yinazao to Asùt Tesoru and the deeper-sources South Chamorro and 589 

Conical mud volcanoes (Fig. 12). However, the bulk-rock major and trace element compositions of 590 

serpentinized clasts recovered from Yinazao, Fantangisña, Asùt Tesoru, South Chamorro and Conical 591 

mud volcanoes largely overlap and therefore do not reflect these strong variations (Fig. 9 and 11). This 592 

is in good agreement with petrographic observations showing the existence of up and down 593 

movements beneath serpentinite mud volcanoes (e.g. Kawahara et al., 2016 or this study). We do 594 

however observe modifications of clasts chemistry according to mineralogy, i.e., Blue-, Liz-, Atg/Liz- 595 

and Atg- serpentinites. 596 

The first step of serpentinization of the forearc mantle corresponds to the formation of brown 597 

serpentine (Liz-serpentinite), a mixture of chrysotile/lizardite with Fe-rich brucite, at the expense of 598 

mantle minerals (Fig. 13). As previously documented (e.g., Kahl et al., 2015; Peters et al., 2017; 599 

Savov et al., 2005, 2007), lizardite-dominated samples are characterized by high concentrations of 600 

fluid mobile elements (FME), such as B, Li, Cs, As, Sb, relative to primitive mantle and/or abyssal 601 
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serpentinite/peridotite (Fig. 11). These enrichments have been attributed to the influx of slab-derived 602 

fluids in the forearc mantle at intermediate temperatures (200-500°C). The onset of subduction is 603 

accompanied by large amounts of compaction, deformation and metamorphic reactions (e.g. clay 604 

mineral or carbonate breakdown) in the slab resulting in the release of FME-rich fluids (e.g., Barnes et 605 

al., 2014; Bebout, 2013; Cannaò et al., 2015; Debret et al., 2013, 2018a; Hattori & Guillot, 2007). The 606 

transfer of such fluids to the overlying fore-arc mantle wedge allows its serpentinization and the 607 

storage of FME in forearc serpentinites. 608 

The progressive burial of ultramafic material is accompanied by the recrystallization of Liz-609 

serpentinites to antigorite, i.e., Atg/Liz- and Atg-serpentinites (Fig. 13). During this transformation, 610 

Cs, Li and Sr concentrations in serpentinites progressively decrease. Indeed, although a relatively 611 

small amount of water is released during the transition of lizardite to antigorite (e.g. Evans, 2004), this 612 

reaction can be accompanied with dissolution and leaching of C- and/or S- bearing phases (e.g. Debret 613 

et al., 2014) and FME released in fluids (e.g., Debret et al., 2013; Kodolányi & Pettke, 2011; Vils et 614 

al., 2011) suggesting that these elements are highly mobile in fluids during forearc burial. Boron 615 

concentrations remain high in Atg/Liz- and Atg-serpentinites relative to slab serpentinites (e.g., Vils et 616 

al., 2011; Debret et al., 2013) and/or abyssal peridotites/serpentinites (Andreani et al., 2009). This 617 

suggests that antigorite also crystallizes in equilibrium with B-rich slab derived fluids. In situ analyses 618 

of partly serpentinized forearc peridotites reveal that, in low temperature lizardite bearing serpentinites 619 

(< 200°C), serpentine textures integrate high amounts of B (up to 200 ppm, Pabst et al, 2011; Kahl et 620 

al., 2014). These values are close to those reported in antigorite bearing textures in mantle wedge 621 

settings (e.g., Deschamps et al., 2010). Hence, the absence of correlation between B concentrations 622 

and indices of prograde metamorphism suggests that, during the serpentinization of the forearc, 623 

saturation (or exchange equilibrium – e.g., Pabst et al., 2011) is rapidly reached in the serpentine, i.e., 624 

before the transition from lizardite to antigorite. In agreement with these observations, sediment pore 625 

water chemistry reveals progressive enrichments in Cs, Li and B concentrations with increasing 626 

distance to the trench (Fryer et al., 2018; Hulme et al., 2010; Mottl et al., 2003) confirming that these 627 

elements become progressively abundant in fluids during the progressive burial of the forearc (e.g., De 628 
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Hoog and Savov, 2018). In contrast to other fluid mobile elements, the concentrations of As, Sb and 629 

LREE progressively increase in whole rocks during the transition of lizardite to antigorite (Figs 9 and 630 

10). Previous studies have shown that these elements can be incorporated in antigorite (e.g., Hattori et 631 

al., 2005). Fluids released during the early (shallow) stage of slab devolatilization are likely dominated 632 

by diagenesis and opal dehydration, whereas later (deeper) processes included decarbonation and clay 633 

mineral decomposition resulting in a modification of slab derived fluid composition (Bebout, 2013 and 634 

reference therein). As, Sb and the LREE are enriched in fluids derived from sediment decarbonation 635 

(Bebout, 2013; Debret et al., 2018a). Hence, we interpret the high As, Sb and LREE concentrations of 636 

the antigorite dominated serpentinites in terms of the onset of carbonate dissolution within the slab 637 

(e.g., carbonated altered oceanic crust). This scenario is in good agreement with high dissolved 638 

inorganic carbon concentrations of pore fluids from the furthest mud volcanoes (Asùt Tesoru, South 639 

Chamorro and Conical; Fryer et al., 2018).  640 

During their exhumation forearc serpentinites are partly to fully recrystallized into blue serpentine. 641 

This episode is accompanied with a flattening of REE patterns (Fig. 10a – Group 1), probably linked 642 

to a high mobility of LREE in fluids (e.g., Fryer et al., 2018), and an increase in Zn concentrations 643 

(Fig. 11c). This observation suggests that the composition serpentinites recorded at depth can be partly 644 

overprinted by low-temperature reactions (< 250°C) during clast exhumation. However, the exact 645 

source of the added Zn is unclear as Zn can be mobile in fluids either at depth during serpentinite 646 

devolatilization (Pons et al., 2016), decarbonation processes (Debret et al., 2018a; Inglis et al., 2017) 647 

as well as near the seafloor through hydrothermal fluid circulation Debret et al., 2018b) and microbial 648 

activity via sulfate reduction (Kelley et al., 2009).  649 

8. Conclusions 650 

Our study reveals that the ultramafic clasts recovered in serpentinite mud volcanoes record three main 651 

stages of serpentinization (Fig. 13): the crystallization of brown serpentine bearing textures composed 652 

of a mixture of Fe-rich brucite and chrysotile and/or lizardite (stage 1 in Fig. 13); the formation of 653 

antigorite in equilibrium with magnetite and Fe-poor brucite at the expense of brown serpentine 654 

(stages 2 to 3 in Fig. 13); the late formation of blue serpentine associated with frambroidal sulfides 655 
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during the exhumation of the ultramafic clasts (stage 4 in Fig. 13). The transition of lizardite to 656 

antigorite is enhanced by an increase of temperature from 200°C up to about 400°C within the forearc 657 

area. These estimates are in good agreement with thermodynamic calculations carried out by Evans 658 

(2004). The crystallization of antigorite at the expense of lizardite has been observed in different mud-659 

volcanoes. Although most of the blue serpentine was observed at Yinazao, there is no evidence for a 660 

systematic serpentine phase change according to depth of the slab/mantle interface. These observations 661 

suggest the existence of complex transport mechanisms below the mud volcanoes, with the 662 

serpentinites being progressively dragged down to greater depth before their exhumation, potentially 663 

controlled by buoyancy, toward to the surface. In agreement with this scenario, no obvious changes of 664 

serpentinite clasts chemistry is observed according to depth to the slab/mantle interface (Fig. 9-11).In 665 

contrast, the crystallization of lizardite and then antigorite in serpentinites is accompanied with a 666 

decrease of Cs, Li, Sr and an increase in As, Sb and LREE concentrations in whole rock, whereas B 667 

concentrations are relatively constant. This suggests that the serpentinized mantle wedge acts as a filter 668 

for trace elements and controls the fluxes of these elements between the surface and the deep mantle. 669 

The fluid release during shallow metamorphic reactions (i.e., transition lizardite to antigorite) are 670 

likely to feed hydrothermal circulation near the surface. In contrast, the dragged down residue (Atg-671 

serpentinites) will undergo a progressive increase in temperature, coupled to the ongoing burial, until 672 

its dehydration at greater depth. This process will release large amounts of fluid, thereby contributing 673 

to arc magmas genesis in subduction zones. 674 
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Figure Captions 991 

Fig. 1: Bathymetry map of the Mariana subduction system showing the locations of Yinazao, 992 

Fantangisña and Asùt Tesoru drilled during IODP Exp. 366 as well as Conical and South Chamorro 993 

that were drilled during previous ODP legs.  994 

Fig. 2: Representative core images of the main lithostratigraphic units observed at Yinazao, 995 

Fantangisña and Asùt Tesoru flanks or summits. (a) Core image of the upper level unit recovered at 996 

the site U1492A (Yinazao summit, section 1H2-99/139cm). The uppermost units of the mud-volcano 997 

is made of red-brown pelagic mud containing carbonated serpentinite breccia and weathered 998 

serpentinites clasts (brown weathering). (b) Core image of the contact between upper and lower level 999 

units at the Site U1496A (Asùt Tesoru summit, section 1F1-1/41cm). The uppermost units of the mud-1000 

volcano is made of red-brown pelagic mud containing partly weathered serpentinite clasts. Note that 1001 

the clast displays a carbonated and brown weathering crust toward to the core. The clast itself is also 1002 

rimed by a halo of Blue-serpentinite while the core correspond to a Liz-serpentinite. The square 1003 

indicates the localization of the macroscopic picture and thin section observations presented in 1004 

Appendix A. The lower unit is made of blue-grey serpentinite mud containing serpentinite clasts of 1005 

various size. (c) Core image of the lower level unit recovered at the Site 1492A (Yinazao summit, 1006 

section 4F2-50/90cm). The lower unit is made of blue-grey serpentinite mud containing serpentinite 1007 

clasts of various size. (d) Core image of a large clast of 40 cm long recovered at the Site 1498B 1008 

(Fantangisña flank, section 3R3, 38-78cm). 1009 

Fig. 3: Photomicrographs (a: crossed polarized light; b and c: plane polarized light), back scattered 1010 

electron image and Raman spectra of the carbonated (a) and blue (b-d) serpentinites recovered at the 1011 

Yinazao mud volcano (photo taken by the Shipboard Scientists, 2018). (a) Carbonated breccia 1012 

(shipboard sample U1491B-2H5-85/88) showing dismembered crack-seal like veins (mainly made of 1013 

chrysotile, Ctl) embedded into a calcite (Cal) matrix. (b) Mesh textures with a pale blue colour 1014 

(sample M7) and corresponding Raman spectra. The meshes centres are replaced by opaque 1015 

aggregates composed of sulfide (pyrite) and brucite ± serpentine. Raman spectra of mesh rim (black 1016 

line) and core (grey line) are mixtures between serpentine and brucite. In the high frequency region, 1017 
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the core of the mesh is mainly dominated by brucite. White square: localisation of the Fig. 2s. (c) 1018 

Opaque vein made of pyrite crossing mesh and bastite textures (shipboard sample U1492C-8F3-1019 

108/112). The centres of the mesh and bastite textures are associated with sulfides. (d) SEM 1020 

observation of a mesh core (sample M7). The core is composed of brucite lamellae with interstitial 1021 

framboidal pyrite. 1022 

Fig. 4: Plot of XCr vs. XMg of spinels in forearc ultramafic clasts from Yinazao, Fantangisña and 1023 

Asùt Tesoru. Compositions broadly overlap with those of forearc peridotites and are more Fe- and Cr-1024 

rich with respect to abyssal peridotites (abyssal and forearc peridotite fields are from Dubois-Côté et 1025 

al. (2005). 1026 

Fig. 5: Major element contents and normalized cations of the different serpentine phases. (a-b) 1027 

Variations of XMg (= Mg / [Fe + Mg]) and FeO with SiO2. (c-d) Variations of Mg and Fe cations per 1028 

formula unit (p.f.u.) with Si + Al cations p.f.u. The decrease of XMg and SiO2 in serpentine 1029 

crystallizing in Blue serpentinites and Liz-serpentinites reflects the presence of Si-free, Fe-rich brucite 1030 

at microscale. The brucite trend intercepts SiO2 = 0 wt% value at #Mg = 0.84. Crystallization of 1031 

antigorite (Atg/Liz-serpentinites and Atg-serpentinites) is associated with the disappearance of the 1032 

brucite component in serpentine analyses, an increase in SiO2 and XMg and a decrease in FeO in 1033 

serpentine. 1034 

Fig. 6: Photomicrographs and corresponding Raman spectra of Liz-serpentinite recovered from Asùt 1035 

Tesoru (Photomicrographs taken by the Shipboard Sci. Party, 2018). (a) Serpentine forms mesh 1036 

textures with a brownish colour and preserved olivine relicts in their centres (plane polarized light, 1037 

sample M19). Note the presence of euhedral and unaltered spinel on the microphotograph bottom. 1038 

Mesh Raman spectra are mixed analyses of lizardite and brucite. (b) Antigorite vein with brucite and 1039 

magnetite in its centre (crossed polarized light, shipboard sample U1497A-13G-CC-W 61/63). The 1040 

vein crosscuts a lizardite/brucite-bearing vein. 1041 

Fig. 7: Photomicrographs (crossed polarized light) and corresponding Raman spectra of the Atg/Liz-1042 

serpentinites recovered from Fantangisña and Asùt Tesoru. (a) Antigorite crystallizes as several 1043 



42 
 

hundred microns long lamellae penetrating mesh textures (sample M32). Centres of the antigorite 1044 

veins are composed of magnetite and brucite. Note that the centres of the mesh textures show mixed 1045 

Raman spectra between lizardite and antigorite. (b) Wide vein of brucite and magnetite crosscutting 1046 

relicts of mesh textures (sample M13). The mesh texture is fully recrystallized into pure antigorite 1047 

where it is in contact with the vein. 1048 

Fig. 8: Photomicrographs of Atg-serpentinites recovered from Asùt Tesoru (both in crossed polarized 1049 

light). (a) Antigorite lamellae with interstitial brucite and magnetite (sample M16). (b) Brucite patch 1050 

associated with euhedral grains of magnetite (sample M15). 1051 

Fig. 9: Bulk rock major element composition of Mariana ultramafic clasts illustrated in (a) Al2O3 vs 1052 

MgO/SiO2 and (b) MgO (wt.%) vs FeO (wt.%). South Chamorro (grey crosses) and Conical (black 1053 

crosses; data from Geldmacher et al., 2008; Kodolanyi et al., 2011; Parkinson and Pearce, 1998; 1054 

Pearce et al., 2000; Savov et al., 2007) are shown for comparison. On Fig. 9a, the dark line represents 1055 

the silicate Earth differentiation trend and the primitive mantle ratio (PM; Godard et al., 2008). 1056 

Changes in whole-rock ratios of both MgO/SiO2 and Al2O3/SiO2 accompany the transition (left to 1057 

right) of depleted (e.g., dunite) to enriched (e.g., lherzolith) peridotites. On Fig. 9b, the dark line 1058 

represents the stoichiometric variations of olivine Fe–Mg composition. Abyssal peridotite 1059 

endmembers of dunite and lherzolite (Godard et al., 2008) are shown for comparison. Note that several 1060 

samples display abnormal high MgO/SiO2 and MgO contents, such reflect the ultra-refractory 1061 

compositions of the ultramafic protoliths and/or the high amount of brucite in the samples. 1062 

Fig. 10: Whole-rock trace elemental compositions of the different ultramafic clasts (Blue-, Liz-, 1063 

Atg/Liz- and Atg-serpentinites). (a) and (b) patterns are normalized to chondrite and primitive mantle 1064 

(PM), respectively, using normalization values from Sun and McDonough (1989). Serpentinite mud 1065 

analysis is from Kodolanyi et al. (2011). Group-1 correspond to blue serpentinites with flat patterns 1066 

similar to that of serpentinite muds and Group-2 correspond to blue serpentinites, Liz-, Atg/Liz- and 1067 

Atg- serpentinites with U-shaped patterns. 1068 
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Fig. 11: Plots of Cs/Yb vs Li* (a), As vs Sb (b) and Sr vs Zn (c) of studied ultramafic clasts. 1069 

Concentrations overlap well with those of ultramafic clasts from South Chamorro (grey crosses) and 1070 

Conical (black crosses; data from Geldmacher et al., 2008; Kodolanyi et al., 2011; Parkinson and 1071 

Pearce, 1998; Pearce et al., 2000; Savov et al., 2007, 2005). Abyssal peridotites (white circles; data 1072 

from Andreani et al., 2014; Augustin et al., 2008; Boschi et al., 2013; Delacour et al., 2008; Jöns et al., 1073 

2010; Kodolanyi et al., 2011; Niu, 2004; Paulick et al., 2006; Rouméjon et al., 2014) have consistently 1074 

lower Cs/Yb and Li* contents with respect to Liz- and Atg/Liz-serpentinites. Sr (⁓0.4-1000 ppm) and 1075 

Zn (⁓30-200 ppm) concentrations of abyssal peridotites and serpentinites overlap with those of the 1076 

forearc but were not presented here for sake of clarity. 1077 

Fig. 12: Plot of δ
18

O (‰) variations in ultramafic clast pore fluids vs distance to the trench (km). The 1078 

δ
18

Ofluid values progressively increase passing from Yinazao to Fantangisña, Asùt Tesoru, South 1079 

Chamorro and Conical. M: data from Mottl et al. (2003); A: calculated δ
18

Ofluid in equilibrium with 1080 

antigorite below Conical by Alt and Shanks (2006). 1081 

Fig. 13: Conceptual model illustrating serpentinisation processes in relation to fluid circulation and 1082 

mantle flow within the Mariana forearc. Numbers in diagram correspond to those in the P-T diagram, 1083 

where pressures have been estimated according to slab/mantle interface depth estimates below the mud 1084 

volcanoes (Hulme et al., 2010). As clasts from the forearc mantle are dragged down to depth (stages 1 1085 

to 3), they undergo an increase in temperature from about 200 to 400°C and the associated 1086 

transformation of lizardite into antigorite. During uplift, the clasts are variably retromorphosed into 1087 

blue serpentinites (stage 4). 1088 

 1089 
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Table 1: Oxygen isotope data and resultant temperature estimates for selected samples. Pore fluid δ18O 

are minimum, maximum and average values. 

Reference 
δ18OSrp 

(‰) 

δ18Ofluid(‰) T (°C)1 δ18Ofluid* 

(‰) 
T(°C)1 

δ18OMgt 

(‰) 
T(°C)2 

mean min max mean min max 

Blue serpentinite 

M3 6.4 -0.9 -1.4 -0.1 183 176 194 - - - - 

M30 7.4 (7.3) 0.1 0.0 0.3 183 181 184 - - - - 

Liz-serpentinite 

M9 7.6 1.8 1.7 2.0 205 203 206 - - - - 

M10 6.8 1.8 1.7 2.0 220 218 222 - - - - 

Atg/Liz-serpentinite 

M12 6.1 1.8 1.7 2.0 232 230 234 4.0 276 - - 

M13 5.8 1.8 1.7 2.0 238 236 240 4.0 283 - - 

Atg-serpentinite 

M14 8.0 - - - - - - - - 1.8 340 

M15 7.1 - - - - - - - - 1.8 409 

M51 8.3 - - - - - - - - 1.8 322 

All δ18O values are given in SMOW. (value): duplicate; 1: thermometer serpentine/fluid of Saccocia et 

al (2009); 2: thermometer serpentine/magnetite of Wenner and Taylor (1971) revised by Früh-Green et 

al. (1996); *fluid value from Mottl et al. (2003). 
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