565 research outputs found

    "In-gel" purified ditags direct synthesis of highly efficient SAGE Libraries

    Get PDF
    BACKGROUND: SAGE (serial analysis of gene expression) is a recently developed technique for systematic analysis of eukaryotic transcriptomes. The most critical step in the SAGE method is large scale amplification of ditags which are then are concatemerized for the construction of representative SAGE libraries. Here, we report a protocol for purifying these ditags via an 'in situ' PAGE purification method. This generates ditags free of linker contaminations, making library construction simpler and more efficient. RESULTS: Ditags used to generate SAGE libraries were demarcated 'in situ' on preparative polyacrylamide gels using XC and BPB dyes, which precisely straddle the ditag band when a 16% PAGE gel (19:1 acrylamide:bis, 5% cross linker) is used to resolve the DNA bands. Here, the ditag DNA was directly excised from gel without visualization via EtBr or fluorescent dye staining, resulting in highly purified ditag DNA free of contaminating linkers. These ditags could be rapidly self ligated even at 4°C to generate concatemers in a controlled manner, which in turn enabled us to generate highly efficient SAGE libraries. This reduced the labor and time necessary, as well as the cost. CONCLUSIONS: This approach greatly simplified the ditag purification procedure for constructing SAGE libraries. Since the traditional post-run staining with EtBr or fluorescent dyes routinely results in cross contamination of a DNA band of interest by other DNA in the gel, the dry gel DNA excision method described here may also be amenable to other molecular biology techniques in which DNA purity is critically important

    Differential sensitivities to lactate transport inhibitors of breast cancer cell lines

    Get PDF
    This is linked to the online version of the paper at: http://dx.doi.org/10.1530/ERC-13-0132.The tumour microenvironment is known to be acidic due to high glycolytic rates of tumour cells. Monocarboxylate transporters (MCTs) play a role in extracellular acidification, which is widely known to be involved in tumour progression. Recently, we have described the upregulation of MCT1 in breast carcinomas and its association with poor prognostic variables. Thus, we aimed to evaluate the effect of lactate transport inhibition in human breast cancer cell lines. The effects of a-cyano-4-hydroxycinnamate, quercetin and lonidamine on cell viability, metabolism, proliferation, apoptosis, migration and invasion were assessed in a panel of different breast cancer cell lines. MCT1, MCT4 and CD147 were differently expressed among the breast cancer cell lines and, as expected, different sensitivities were observed for the three inhibitors. Interestingly, in the most sensitive cell lines, lactate transport inhibition induced a decrease in cell proliferation, migration and invasion, as well as an increase in cell death. Results were validated by silencing MCT1 expression using siRNA. The results obtained here support targeting of lactate transport as a strategy to treat breast cancer, with a special emphasis on the basal-like subtype, which so far does not have a specific molecular therapy.This work was supported by the Fundação para a Ciência e a Tecnologia (FCT) grant ref. PTDC/SAU-FCF/104347/2008, under the scope of ‘Programa Operacional Temático Factores de Competitividade’ (COMPETE) of ‘Quadro Comunitário de Apoio III’ and co-financed by the Fundo Europeu De Desenvolvimento Regional (FEDER)

    The cytotoxicity of 3-bromopyruvate in breast cancer cells depends on extracellular pH

    Get PDF
    Although the anti-cancer properties of 3BP have been described previously, its selectivity for cancer cells still needs to be explained. In the work reported here we characterized the kinetic parameters of radiolabelled [14C]-3BP uptake in three breast cancer cell lines that display different levels of resistance to 3BP: ZR-75-1 < MCF-7 < SK-BR-3. At pH 6.0 the affinity of cancer cells for 3BP transport, correlates with their sensitivity, a pattern that does not occur at pH 7.4. In the three cell lines, the uptake of 3BP is dependent on the proton motive force and is decreased by MCTs inhibitors. In the SK-BR-3 cell line, a sodium-dependent transport also occurs. Butyrate promotes the localization of MCT-1 at the plasma membrane and increases the level of MCT-4 expression, leading to a higher sensitivity for 3BP. Here, we demonstrate that this phenotype is accompanied by an increase in affinity for 3BP uptake. Our results confirm the role of MCTs, especially MCT-1 in 3BP uptake and the importance of CD147 glycosylation in this process. We find that the affinity for 3BP transport is higher when the extracellular milieu is acid. This is a typical phenotype of tumor microenvironment and explains the lack of secondary effects of 3BP already described in in vivo studies.FEDER (Fundo Europeu deDesenvolvimento Regional), through POFC (Programa Operacional Factores de Competitividade) – COMPETE, and by Portuguese National Funds from FCT (Fundac¸˜ao para a Ciˆencia e Tecnologia) in the scope of the project PEst-OE/BIA/U14050/2014. JAS [grant number SFRH/BD/76038/2011] received a fellowship from the Portuguese government from the FCT through FSE (Fundo Social Europeu) and POPH (Programa Operacional Potencial Humano)

    Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets

    Get PDF
    Background. Gliomas exhibit high glycolytic rates, and monocarboxylate transporters (MCTs) play a major role in the maintenance of the glycolytic metabolism through the proton-linked transmembrane transport of lactate. However, their role in gliomas is poorly studied. Thus, we aimed to characterize the expression of MCT1, MCT4, and their chaperone CD 147 and to assess the therapeutic impact of MCT inhibition in gliomas. Methods. MCTs and CD 147 expressions were characterized by immunohistochemistry in nonneoplastic brain and glioma samples. The effect of CHC (MCT inhibitor) and MCT1 silencing was assessed in in vitro and in vivo glioblastoma models. Results. MCT1, MCT4, and CD 147 were overexpressed in the plasma membrane of glioblastomas, compared with diffuse astrocytomas and nonneoplastic brain. CHC decreased glycolytic metabolism, migration, and invasion and induced cell death in U251 cells (more glycolytic) but only affected proliferation in SW1088 (more oxidative). The effectiveness of CHC in glioma cells appears to be dependent on MCT membrane expression. MCT1 downregulation showed similar effects on different glioma cells, supporting CHC as an MCT1 inhibitor. There was a synergistic effect when combining CHC with temozolomide treatment in U251 cells. In the CAM in vivo model, CHC decreased the size of tumors and the number of blood vessels formed. Conclusions. This is the most comprehensive study reporting the expression of MCTs and CD 147 in gliomas. The MCT1 inhibitor CHC exhibited anti-tumoral and anti-angiogenic activity in gliomas and, of importance, enhanced the effect of temozolomide. Thus, our results suggest that development of therapeutic approaches targeting MCT1 may be a promising strategy in glioblastoma treatment.Life and Health Sciences Research Institute, University of Minho, Portugal; Fundacao para a Ciencia e Tecnologia [SFRH/BI/33503/2008, SFRH/BPD/69479/2010, SFRH/BD/36463/2007]info:eu-repo/semantics/publishedVersio

    pO polarography, contrast enhanced color duplex sonography (CDS), [18F] fluoromisonidazole and [18F] fluorodeoxyglucose positron emission tomography: validated methods for the evaluation of therapy-relevant tumor oxygenation or only bricks in the puzzle of tumor hypoxia?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The present study was conducted to analyze the value of ([<sup>18</sup>F] fluoromisonidazole (FMISO) and [<sup>18</sup>F]-2-fluoro-2'-deoxyglucose (FDG) PET as well as color pixel density (CPD) and tumor perfusion (TP) assessed by color duplex sonography (CDS) for determination of therapeutic relevant hypoxia. As a standard for measuring tissue oxygenation in human tumors, the invasive, computerized polarographic needle electrode system (pO<sub>2 </sub>histography) was used for comparing the different non invasive measurements.</p> <p>Methods</p> <p>Until now a total of 38 Patients with malignancies of the head and neck were examined. Tumor tissue pO<sub>2 </sub>was measured using a pO<sub>2</sub>-histograph. The needle electrode was placed CT-controlled in the tumor without general or local anesthesia. To assess the biological and clinical relevance of oxygenation measurement, the relative frequency of pO<sub>2 </sub>readings, with values ≤ 2.5, ≤ 5.0 and ≤ 10.0 mmHg, as well as mean and median pO<sub>2 </sub>were stated. FMISO PET consisted of one static scan of the relevant region, performed 120 min after intravenous administration. FMISO tumor to muscle ratios (FMISO<sub>T/M</sub>) and tumor to blood ratios (FMISO<sub>T/B</sub>) were calculated. FDG PET of the lymph node metastases was performed 71 ± 17 min after intravenous administration. To visualize as many vessels as possible by CDS, a contrast enhancer (Levovist<sup>®</sup>, Schering Corp., Germany) was administered. Color pixel density (CPD) was defined as the ratio of colored to grey pixels in a region of interest. From CDS signals two parameters were extracted: color hue – defining velocity (v) and color area – defining perfused area (A). Signal intensity as a measure of tissue perfusion (TP) was quantified as follows: TP = v<sub>mean </sub>× A<sub>mean</sub>.</p> <p>Results</p> <p>In order to investigate the degree of linear association, we calculated the Pearson correlation coefficient. Slight (|r| > 0.4) to moderate (|r| > 0.6) correlation was found between the parameters of pO<sub>2 </sub>polarography (pO<sub>2 </sub>readings with values ≤ 2.5, ≤ 5.0 and ≤ 10.0 mmHg, as well as median pO<sub>2</sub>), CPD and FMISO<sub>T/M</sub>. Only a slight correlation between TP and the fraction of pO<sub>2 </sub>values ≤ 10.0 mmHg, median and mean pO<sub>2 </sub>could be detected. After exclusion of four outliers the absolute values of the Pearson correlation coefficients increased clearly. There was no relevant association between mean or maximum FDG uptake and the different polarographic- as well as the CDS parameters.</p> <p>Conclusion</p> <p>CDS and FMISO PET represent different approaches for estimation of therapy relevant tumor hypoxia. Each of these approaches is methodologically limited, making evaluation of clinical potential in prospective studies necessary.</p

    Hypoxia-mediated upregulation of MCT1 expression supports the glycolytic phenotype of glioblastomas

    Get PDF
    Background: Glioblastomas (GBM) present a high cellular heterogeneity with conspicuous necrotic regions associated with hypoxia, which is related to tumor aggressiveness. GBM tumors exhibit high glycolytic metabolism with increased lactate production that is extruded to the tumor microenvironment through monocarboxylate transporters (MCTs). While hypoxia-mediated regulation of MCT4 has been characterized, the role of MCT1 is still controversial. Thus, we aimed to understand the role of hypoxia in the regulation of MCT expression and function in GBM, MCT1 in particular. Methods: Expression of hypoxia-and glycolytic-related markers, as well as MCT1 and MCT4 isoforms was assessed in in vitro and in vivo orthotopic glioma models, and also in human GBM tissues by immunofluorescence/immunohistochemistry and Western blot. Following MCT1 inhibition, either pharmacologically with CHC (a-cyano-4-hydroxynnamic acid) or genetically with siRNAs, we assessed GBM cell viability, proliferation, metabolism, migration and invasion, under normoxia and hypoxia conditions. Results: Hypoxia induced an increase in MCT1 plasma membrane expression in glioma cells, both in in vitro and in vivo models. Additionally, treatment with CHC and downregulation of MCT1 in glioma cells decreased lactate production, cell proliferation and invasion under hypoxia. Moreover, in the in vivo orthotopic model and in human GBM tissues, there was extensive co-expression of MCT1, but not MCT4, with the GBM hypoxia marker CAIX. Conclusion: Hypoxia-induced MCT1 supports GBM glycolytic phenotype, being responsible for lactate efflux and an important mediator of cell survival and aggressiveness. Therefore, MCT1 constitutes a promising therapeutic target in GBM.This study was supported by Projecto Estratégico- LA 26 – 2013-2014 (PEst-C/SAL/LA0026/2013) and ON.2 SR&TD Integrated Program (NORTE-07-0124FEDER-000017)” co-funded by Programa Operacional Regional do Norte (ON.2- O Novo Norte), Quadro de Referência Estratégico Nacional (QREN), through Fundo Europeu de Desenvolvimento Regional (FEDER), as well as MCTI/CNPq Nº 73/2013 (Brazil). VMG received a fellowship from Fundação para a Ciência e Tecnologia (FCT) ref. SFRH/BD/51997/2012.info:eu-repo/semantics/publishedVersio

    The Antitumor Effect and Hepatotoxicity of a Hexokinase II Inhibitor 3-Bromopyruvate: In Vivo Investigation of Intraarterial Administration in a Rabbit VX2 Hepatoma Model

    Get PDF
    Objective: The purpose of this study was to compare the antitumor effect and hepatotoxicity of an intraarterial delivery of low-dose and high-dose 3-bromopyruvate (3-BrPA) and those of a conventional Lipiodol-doxorubicin emulsion in a rabbit VX2 hepatoma model. Materials and Methods: This experiment was approved by the animal care committee at our institution. VX2 carcinoma was implanted in the livers of 36 rabbits. Transcatheter intraarterial administration was performed using low dose 3-BrPA (25 mL in a 1 mM concentration, n = 10), high dose 3-BrPA (25 mL in a 5 mM concentration, n = 10) and Lipiodol-doxorubicin emulsion (1.6 mg doxorubicin/0.4 mL Lipiodol, n = 10), and six rabbits were treated with normal saline alone as a control group. One week later, the proportion of tumor necrosis was calculated based on histopathologic examination. The hepatotoxicity was evaluated by biochemical analysis. The differences between these groups were statistically assessed with using Mann-Whitney U tests and Kruskal-Wallis tests. Results: The tumor necrosis rate was significantly higher in the high dose group (93% +/- 7.6 [mean +/- SD]) than that in the control group (48% +/- 21.7) (p = 0.0002), but the tumor necrosis rate was not significantly higher in the low dose group (62% +/- 20.0) (p = 0.2780). However, the tumor necrosis rate of the high dose group was significantly lower than that of the Lipiodol-doxorubicin treatment group (99% +/- 2.7) (p = 0.0015). The hepatotoxicity observed in the 3-BrPA groups was comparable to that of the Lipiodol-doxorubicin group. Conclusion: Even though intraarterial delivery of 3-BrPA shows a dose-related antitumor effect, single session treatment seems to have limited efficacy when compared with the conventional method.Vali M, 2008, J PHARMACOL EXP THER, V327, P32, DOI 10.1124/jpet.108.141093Park HS, 2007, KOREAN J RADIOL, V8, P216Vali M, 2007, J VASC INTERV RADIOL, V18, P95, DOI 10.1016/j.jvir.2006.10.019Shin SW, 2006, ACTA RADIOL, V47, P1036, DOI 10.1080/02841850600977752Gwak GY, 2005, J HEPATOL, V42, P358, DOI 10.1016/j.jhep.2004.11.020Ko YH, 2004, BIOCHEM BIOPH RES CO, V324, P269, DOI 10.1016/j.bbrc.2004.09.047Llovet JM, 2003, LANCET, V362, P1907Yoon CJ, 2003, RADIOLOGY, V229, P126, DOI 10.1148/radio.2291021029Pedersen PL, 2002, BBA-BIOENERGETICS, V1555, P14Geschwind JFH, 2002, CANCER RES, V62, P3909Ko YH, 2001, CANCER LETT, V173, P83Smith TAD, 2000, BRIT J BIOMED SCI, V57, P170Pedersen PL, 1999, J BIOENERG BIOMEMBR, V31, P291Dang CV, 1999, TRENDS BIOCHEM SCI, V24, P68Bosch FX, 1999, SEMIN LIVER DIS, V19, P271Bruix J, 1997, HEPATOLOGY, V25, P259Rempel A, 1996, CANCER RES, V56, P2468Stuart KE, 1996, CANCER, V77, P2217MATHUPALA SP, 1995, J BIOL CHEM, V270, P16918OKADA M, 1995, BRIT J CANCER, V71, P518WATANABE D, 1995, ONCOLOGY, V52, P76REMPEL A, 1994, BBA-GENE STRUCT EXPR, V1219, P660BRUIX J, 1992, J HEPATOL, V15, P350OKUDA K, 1992, HEPATOLOGY, V15, P948SHINOHARA Y, 1991, FEBS LETT, V291, P55KO YH, 1990, ARCH BIOCHEM BIOPHYS, V278, P373BISMUTH H, 1986, WORLD J SURG, V10, P311JOHANSSON T, 1985, BIOCHEM BIOPH RES CO, V133, P608VIITANEN PV, 1984, J BIOL CHEM, V259, P9679BUSTAMANTE E, 1981, J BIOL CHEM, V256, P8699PEDERSEN PL, 1978, PROGR EXPT TUMOR RES, V22, P190WEINHOUS.S, 1972, CANCER RES, V32, P2007
    corecore