80 research outputs found
\ud Detection and Monitoring of Insecticide Resistance in Malaria Vectors in Tanzania Mainland\ud
\ud
Vector control is a major component of the global strategy for malaria control which aims to prevent parasite transmission mainly through interventions targeting adult Anopheline vectors. Insecticide treated nets (ITNs) and indoor residual spraying (IRS) are the cornerstone of malaria vector control programmes. These major interventions in most cases use pyrethroid insecticides which are also used for agricultural purposes. With widespread development of resistance to pyrethroid insecticides in malaria vectors raises concern over the sustainability of insecticide-based interventions for malaria control. Therefore, close monitoring of performance of the insecticides against malaria vectors is essential for early detection and\ud
management of resistance. To measure pyrethroid susceptibility in populations of malaria vectors in Tanzania and to test the efficacy of LLINs/ITNs and insecticide residues on sprayed wall substrates in the IRS operation areas. In 2011 the National Institute for Medical Research (NIMR) in collaboration with National Malaria Control Programme (NMCP) conducted large scale surveillance to determine the countrywide susceptibility levels of malaria vectors to insecticides used for both public health and agricultural purposes. Anopheles gambiae Giles s.l. were collected during national surveys and samples of LLINs/ITNs in the 14 sentinel sites and houses from the IRS areas were randomly selected for bioassays to test the efficacy and insecticide residual effects on sprayed wall substrates respectively. Wild adult mosquitoes for susceptibility testing were collected by resting catches indoors. Net traps (outdoors and indoors) were set up to enhance catches. WHO Susceptibility kits were used to test for resistance status using test papers: Lambdacyhalothrin 0.05%, Deltamethrin 0.05%, Permethrin 0.75%, DDT 4%, Propoxur 0.1% and Fenitrothion 1%. The quality of the test paper was checked against a laboratory susceptible An. gambiae Kisumu strain. Knockdown effect and mortality were measured in standard WHO susceptibility tests and cone bio-efficacy tests. Whereas, con bioassays on treated walls and ITNs were conducted using the laboratory susceptible An. gambiae Kisumu strain. The results from the surveillance recorded continued susceptibility of malaria vectors to commonly used insecticides. However, there were some isolated cases of resistance and/or reduced susceptibility to pyrethroid insecticides which may not compromise the current vector control interventions in the country. Anopheles gambiae s.l. showed resistance (15-28%) to each of the pyrethroids and to DDT but not to Organophosphates (Propoxur 0.1%), and Carbamates (Fenitrothion 1%). The information obtained from this surveillance is expected to be used to guide the National Malaria Control Programme on the rational selection of insecticides for malaria vector control and for the national mitigation plans for management and containment of malaria vector resistance in the country. The current observation warrants more vigilant monitoring of the susceptibility of malaria mosquitoes to commonly used insecticides in areas found with resistance and/or reduced levels of susceptibility of malaria vectors to insecticides, particularly in areas with heavy agricultural and/or public health use of insecticides where resistance is likely to develop. The current survey covered malaria vectors only and not the non malaria vectors (nuisance) mosquitoes such as Culex. Similar monitoring of insecticide susceptibility of this non malaria vectors may be needed to ensure public motivation for sustained use of ITNs/LLINs in the country. The surveillance leading to these results received funding from PMI/USAID through RTI International with Sub Agreement Number 33300212555.\u
Comparative performance of three experimental hut designs for measuring malaria vector responses to insecticides in Tanzania.
BACKGROUND: Experimental huts are simplified, standardized representations of human habitations that provide model systems to evaluate insecticides used in indoor residual spray (IRS) and long-lasting insecticidal nets (LLINs) to kill disease vectors. Hut volume, construction materials and size of entry points impact mosquito entry and exposure to insecticides. The performance of three standard experimental hut designs was compared to evaluate insecticide used in LLINs. METHODS: Field studies were conducted at the World Health Organization Pesticide Evaluation Scheme (WHOPES) testing site in Muheza, Tanzania. Three East African huts, three West African huts, and three Ifakara huts were compared using Olyset(®) and Permanet 2.0(®) versus untreated nets as a control. Outcomes measured were mortality, induced exophily (exit rate), blood feeding inhibition and deterrence (entry rate). Data were analysed using linear mixed effect regression and Bland-Altman comparison of paired differences. RESULTS: A total of 613 mosquitoes were collected in 36 nights, of which 13.5% were Anopheles gambiae sensu lato, 21% Anopheles funestus sensu stricto, 38% Mansonia species and 28% Culex species. Ifakara huts caught three times more mosquitoes than the East African and West African huts, while the West African huts caught significantly fewer mosquitoes than the other hut types. Mosquito densities were low, very little mosquito exit was measured in any of the huts with no measurable exophily caused by the use of either Olyset or Permanet. When the huts were directly compared, the West African huts measured greater exophily than other huts. As unholed nets were used in the experiments and few mosquitoes were captured, it was not possible to measure difference in feeding success either between treatments or hut types. In each of the hut types there was increased mortality when Permanet or Olyset were present inside the huts compared to the control, however this did not vary between the hut types. CONCLUSIONS: Both East African and Ifakara huts performed in a similar way although Ifakara huts allowed more mosquitoes to enter, increasing data power. The work convincingly demonstrates that the East African huts and Ifakara huts collect substantially more mosquitoes than the West African huts
Advantages and Limitations of Commercially Available Electrocuting Grids for Studying Mosquito Behaviour.
Mosquito feeding behaviour plays a major role in determining malaria transmission intensity and the impact of specific prevention measures. Human Landing Catch (HLC) is currently the only method that can directly and consistently measure the biting rates of anthropophagic mosquitoes, both indoors and outdoors. However, this method exposes the participant to mosquito-borne pathogens, therefore new exposure-free methods are needed to replace it. Commercially available electrocuting grids (EGs) were evaluated as an alternative to HLC using a Latin Square experimental design in Dar es Salaam, Tanzania. Both HLC and EGs were used to estimate the proportion of human exposure to mosquitoes occurring indoors (πi), as well as its two underlying parameters: the proportion of mosquitoes caught indoors (Pi) and the proportion of mosquitoes caught between the first and last hour when most people are indoors (Pfl). HLC and EGs methods accounted for 69% and 31% of the total number of female mosquitoes caught respectively and both methods caught more mosquitoes outdoors than indoors. Results from the gold standard HLC suggest that An. gambiae s.s. in Dar es Salaam is neither exophagic nor endophagic (Pi ≈ 0.5), whereas An. arabiensis is exophagic (Pi < < 0.5). Both species prefer to feed after 10 pm when most people are indoors (Pfl > >0.5). EGs yielded estimates of Pi for An. gambiae s.s., An. arabiensis and An. coustani, that were approximately equivalent to those with HLC but significantly underestimated Pfl for An. gambiae s.s. and An. coustani. The relative sampling sensitivity of EGs declined over the course of the night (p ≤ 0.001) for all mosquito taxa except An. arabiensis. Commercial EGs sample human-seeking mosquitoes with high sensitivity both indoors and outdoors and accurately measure the propensity of Anopheles malaria vectors to bite indoors rather than outdoors. However, further modifications are needed to stabilize sampling sensitivity over a full nocturnal cycle so that they can be used to survey patterns of human exposure to mosquitoes
Durability of Olyset campaign nets distributed between 2009 and 2011 in eight districts of Tanzania.
BACKGROUND: Long-lasting insecticidal nets (LLINs) are the first line choice for malaria vector control in sub-Saharan Africa, with most countries adopting universal coverage campaigns. However, there is only limited information on LLIN durability under user conditions. Therefore, this study aimed to assess the durability of Olyset(®) LLINs distributed during campaigns between 2009 and 2011 in Tanzania. METHODS: A retrospective field survey was conducted in eight districts in Tanzania mainland to assess the durability of Olyset campaign nets. Household questionnaires were used to assess attrition, i.e. net loss. All nets remaining in households were collected. A sub-sample of 198 Olyset campaign nets was examined for bio-efficacy against Anopheles gambiae s.s. mosquitoes, permethrin content and physical integrity following standard World Health Organization (WHO) methods. RESULTS: Of 6067 campaign nets reported to have been received between 2009 and 2011, 35% (2145 nets) were no longer present. Most of those nets had been discarded (84%) mainly because they were too torn (94%). Of the 198 sub-sampled Olyset LLINs, 61% were still in serviceable physical condition sufficient to provide personal protection while 39% were in unserviceable physical condition according to WHO proportionate Hole Index (pHI). More than 96% (116/120) of nets in serviceable condition passed WHO bioefficacy criteria while all nets in unserviceable condition passed WHO bioefficacy criteria. Overall mean permethrin content was 16.5 g/kg (95% CI 16.2-16.9) with 78% of the sub-sampled nets retaining recommended permethrin content regardless of their age or physical condition. Nets aged 4 years and above had a mean permethrin content of 14 g/kg (95% CI 12.0-16.0). The only statistically significant predictor of reduced physical net integrity was rats in the house. CONCLUSIONS: Two-to-four years after a mass campaign, only 39% of distributed nets remain both present and in serviceable physical condition, a functional survival considerably below WHO assumptions of 50% survival of a 'three-year' net. However, the majority of nets still retained substantial levels of permethrin and could still be bio-chemically useful against mosquitoes if their holes were repaired, adding evidence to the value of net care and repair campaigns
Recommended from our members
Interaction of high energy protons in nuclear emulsions loaded with b 10 and LiF
An experiment is proposed to expose nuclear emulsions loaded with B{sup 10} and LiF to high energy protons at 100 GeV, 150 GeV and 200 GeV. The purposes are: (i) to measure the total cross-sections at these incident energies, (ii) to investigate charged multiplicity as a function of energy, (iii) to investigate the angular distribution and development of hadron showers in collisions of protons with nuclei
The consequences of declining population access to insecticide-treated nets (ITNs) on net use patterns and physical degradation of nets after 22 months of ownership.
BACKGROUND: As insecticide-treated nets (ITNs) wear out and are disposed, some household members are prioritized to use remaining ITNs. This study assessed how nets are allocated within households to individuals of different age categories as ITNs are lost or damaged and as new ITNs are obtained. The study also explored how ITN allocation affects ITN durability. METHODS: A cross-sectional household survey and ITN durability study was conducted among 2,875 households across Tanzania to determine the proportion of nets that remain protective (serviceable) 22 months after net distribution aiming for universal coverage. Allocation of study nets within houses, and re-allocation of ITNs when new universal replacement campaign (URC) nets arrived in study households in Musoma District, was also assessed. RESULTS: Some 57.0% (95% CI 53.9-60.1%) of households had sufficient ITNs for every household member, while 84.4% (95% CI 82.4-86.4%) of the population had access to an ITN within their household (assuming 1 net covers every 2 members). In households with sufficient nets, 77.5% of members slept under ITNs. In households without sufficient nets, pregnant women (54.6%), children 65 years (32.6%) sleeping under ITNs. Crowding ([Formula: see text] 3 people sleeping under nets) was twice as common among people residing in houses without sufficient nets for all age groups, apart from children < 5. Nets were less likely to be serviceable if: [Formula: see text] 3 people slept under them (OR 0.50 (95% CI 0.40-0.63)), or if nets were used by school-age children (OR 0.72 (95% CI 0.56-0.93)), or if the net product was Olyset®. One month after the URC, only 23.6% (95% CI 16.7-30.6%) of the population had access to a URC ITN in Musoma district. Householders in Musoma district continued the use of old ITNs even with the arrival of new URC nets. CONCLUSION: Users determined the useful life of ITNs and prioritized pregnant women and children < 5 to serviceable ITNs. When household net access declines, users adjust by crowding under remaining nets, which further reduces ITN lifespan. School-age children that commonly harbour gametocytes that mediate malaria transmission are compelled to sleep under unserviceable nets, crowd under nets or remain uncovered. However, they were accommodated by the arrival of new nets. More frequent ITN delivery through the school net programme in combination with mass distribution campaigns is essential to maximize ITN effectiveness
Comparing the new Ifakara Ambient Chamber Test with WHO cone and tunnel tests for bioefficacy and non-inferiority testing of insecticide-treated nets.
BACKGROUND: Insecticide-treated net (ITN) durability, measured through physical integrity and bioefficacy, must be accurately assessed in order to plan the timely replacement of worn out nets and guide procurement of longer-lasting, cost-effective nets. World Health Organization (WHO) guidance advises that new intervention class ITNs be assessed 3 years after distribution, in experimental huts. In order to obtain information on whole-net efficacy cost-effectively and with adequate replication, a new bioassay, the Ifakara Ambient Chamber Test (I-ACT), a semi-field whole net assay baited with human host, was compared to established WHO durability testing methods. METHODS: Two experiments were conducted using pyrethroid-susceptible female adult Anopheles gambiae sensu stricto comparing bioefficacy of Olyset®, PermaNet® 2.0 and NetProtect® evaluated by I-ACT and WHO cone and tunnel tests. In total, 432 nets (144/brand) were evaluated using I-ACT and cone test. Olyset® nets (132/144) that did not meet the WHO cone test threshold criteria (≥ 80% mortality or ≥ 95% knockdown) were evaluated using tunnel tests with threshold criteria of ≥ 80% mortality or ≥ 90% feeding inhibition for WHO tunnel and I-ACT. Pass rate of nets tested by WHO combined standard WHO bioassays (cone/tunnel tests) was compared to pass in I-ACT only by net brand and time after distribution. RESULTS: Overall, more nets passed WHO threshold criteria when tested with I-ACT than with standard WHO bioassays 92% vs 69%, (OR: 4.1, 95% CI 3.5-4.7, p < 0.0001). The proportion of Olyset® nets that passed differed if WHO 2005 or WHO 2013 LN testing guidelines were followed: 77% vs 71%, respectively. Based on I-ACT results, PermaNet® 2.0 and NetProtect® demonstrated superior mortality and non-inferior feeding inhibition to Olyset® over 3 years of field use in Tanzania. CONCLUSION: Ifakara Ambient Chamber Test may have use for durability studies and non-inferiority testing of new ITN products. It measures composite bioefficacy and physical integrity with both mortality and feeding inhibition endpoints, using fewer mosquitoes than standard WHO bioassays (cone and tunnel tests). The I-ACT is a high-throughput assay to evaluate ITN products that work through either contact toxicity or feeding inhibition. I-ACT allows mosquitoes to interact with a host sleeping underneath a net as encountered in the field, without risk to human participants
Luminescent Ruthenium(II) Polypyridyl Functionalized Gold Nanoparticles; Their DNA Binding Abilities and Application As Cellular Imaging Agents
The synthesis and photophysical and biological
investigation of Ru(II)-polypyridyl stabilized watersoluble,
luminescent gold nanoparticles (AuNPs) are described.
These structures bind to DNA and undergo rapid
cellular uptake, being localized within the cell cytoplasm and
nucleus within 4 h
Structural Conformers of (1,3-Dithiol-2-ylidene)ethanethioamides: The Balance Between Thioamide Rotation and Preservation of Classical Sulfur-Sulfur Hypervalent Bonds
The reaction of N-(2-phthalimidoethyl)-N-alkylisopropylamines and S2Cl2 gave 4-N-(2-phthalimidoethyl)-N-alkylamino-5-chloro-1,2-dithiol-3-thiones that quantitatively cycloadded to dimethyl or diethyl acetylenedicarboxylate to give stable thioacid chlorides, which in turn reacted with one equivalent of aniline or a thiole to give thioanilides or a dithioester. Several compounds of this series showed atropisomers that were studied by a combination of dynamic NMR, simulation of the signals, conformational analysis by DFT methods, and single crystal X-ray diffraction, showing a good correlation between the theoretical calculations, the experimental values of energies, and the preferred conformations in the solid state. The steric hindering of the crowded substitution at the central amine group was found to be the reason for the presence of permanent atropisomers in this series of compounds and the cause of a unique disposition of the thioxo group at close-to-right angles with respect to the plane defined by the 1,3-dithiole ring in the dithiafulvene derivatives, thus breaking the sulfur–sulfur hypervalent bond that is always found in this kind of compounds.Ministerio
de Economıá y Competitividad, Spain (Project CTQ2012-
31611), Junta de Castilla y León, Consejería
de Educación y
Cultura y Fondo Social Europeo (Project BU246A12-1), and
the European Commission, Seventh Framework Programme
(Project SNIFFER FP7-SEC-2012-312411
- …