354 research outputs found

    Altered neocortical tactile but preserved auditory early change detection responses in Friedreich ataxia

    Get PDF
    Available online 11 May 2019Objective: To study using magnetoencephalography (MEG) the spatio-temporal dynamics of neocortical responses involved in sensory processing and early change detection in Friedreich ataxia (FRDA). Methods: Tactile (TERs) and auditory (AERs) evoked responses, and early neocortical change detection responses indexed by the mismatch negativity (MMN) were recorded using tactile and auditory oddballs in sixteen FRDA patients and matched healthy subjects. Correlations between the maximal amplitude of each response, genotype and clinical parameters were investigated. Results: Evoked responses were detectable in all FRDA patients but one. In patients, TERs were delayed and reduced in amplitude, while AERs were only delayed. Only tactile MMN responses at the contralateral secondary somatosensory cortex were altered in FRDA patients. Maximal amplitudes of TERs, AERs and tactile MMN correlated with genotype, but did not correlate with clinical parameters. Conclusions: In FRDA, the amplitude of tactile MMN responses at SII cortex are reduced and correlate with the genotype, while auditory MMN responses are not altered. Significance: Somatosensory pathways and tactile early change detection are selectively impaired in FRDAThis study was financially supported by (i) the research grant ‘‘Les Voies du Savoir” from the Fonds Erasme (Brussels, Belgium) and (ii) the Fonds de la Recherche Scientifique (FRS-FNRS, Brussels, Belgium; research credit: J.0095.16.F). Gilles Naeije was supported by a research grant from the Fonds Erasme (Brussels, Belgium). Mathieu Bourguignon was supported by the program Attract of Innoviris (grant 2015-BB2B-10), by the Spanish Ministry of Economy and Competitiveness (grant PSI2016-77175-P), and by the Marie Skłodowska-Curie Action of the European Commission (grant 743562). Xavier De Tiège is Postdoctorate Clinical Master Specialist at the Fonds de la Recherche Scientifique (FRS-FNRS, Brussels, Belgium). The MEG project at the CUB Hôpital Erasme is financially supported by the Fonds Erasme (Research grant ‘‘Les Voies du Savoir”, Brussels, Belgium). The authors would like to thank Brice Marty for his help in MEG data acquisition

    Test–retest reliability of the Friedreich’s ataxia rating scale

    Get PDF
    The modified Friedreich Ataxia Rating Scale (mFARS) is a disease specific, exam-based neurological rating scale commonly used as a outcome measure in clinical trials. While extensive clinimetric testing indicates it’s validity in measuring disease progression, formal test–retest reliability was lacking. To fill this gap, we acquired results from screening and baseline visits of several large clinical trials and calculated intraclass correlation coefficients, coefficients of variance, standard error, and the minimally detectable changes. This study demonstrated excellent test–retest reliability of the mFARS, and it’s upright stability subscore.Fil: Rummey, Christian. Clinical Data Science Gmbh; SuizaFil: Zesiewicz, Theresa A.. University of South Florida; ArgentinaFil: Perez Lloret, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Cardiológicas; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Farmer, Jennifer M.. Friedreich Ataxia Research Alliance; Estados UnidosFil: Pandolfo, Massimo. Université Libre de Bruxelles; BélgicaFil: Lynch, David R.. Children’s Hospital of Philadelphia; Estados Unido

    Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Gene Is a Risk Factor of Large-Vessel Atherosclerosis Stroke

    Get PDF
    BACKGROUND/PURPOSE: Genetic variation in proprotein convertase subtilisin/kexin type 9 (PCSK9) gene has been recently identified as an important determinant of plasma LDL-cholesterol and severity of coronary heart disease. We studied whether the PCSK9 gene is linked to the risk of ischemic stroke (IS) and with the development of intracranial atherosclerosis. METHODS/RESULTS: The pivotal E670G polymorphism, tagging an important haplotype of the PCSK9 gene, was genotyped in two independent studies. The Belgium Stroke Study included 237 middle aged (45-60) Belgian patients, with small-vessel occlusion (SVO) and large-vessel atherosclerosis stroke (LVA), and 326 gender and ethnicity matched controls (>60 yrs) without a history of stroke. In multivariate analysis the minor allele (G) carriers appeared as a significant predictor of LVA (OR = 3.52, 95% CI 1.25-9.85; p = 0.017). In a Finnish crossectional population based consecutive autopsy series of 604 males and females (mean age 62.5 years), G-allele carriers tended to have more severe allele copy number-dependent (p = 0.095) atherosclerosis in the circle of Willis and in its branches. CONCLUSION: Our findings in this unique combination of clinical and autopsy data, provide evidence that PCSK9 gene associates with the risk of LVA stroke subtype, and suggest that the risk is mediated by the severity of intracranial atherosclerosis.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Functional genomic analysis of frataxin deficiency reveals tissue-specific alterations and identifies the PPARγ pathway as a therapeutic target in Friedreich’s ataxia

    Get PDF
    Friedreich’s ataxia (FRDA), the most common inherited ataxia, is characterized by focal neurodegeneration, diabetes mellitus and life-threatening cardiomyopathy. Frataxin, which is significantly reduced in patients with this recessive disorder, is a mitochondrial iron-binding protein, but how its deficiency leads to neurodegeneration and metabolic derangements is not known. We performed microarray analysis of heart and skeletal muscle in a mouse model of frataxin deficiency, and found molecular evidence of increased lipogenesis in skeletal muscle, and alteration of fiber-type composition in heart, consistent with insulin resistance and cardiomyopathy, respectively. Since the peroxisome proliferator-activated receptor gamma (PPARγ) pathway is known to regulate both processes, we hypothesized that dysregulation of this pathway could play a key role in frataxin deficiency. We confirmed this by showing a coordinate dysregulation of the PPARγ coactivator Pgc1a and transcription factor Srebp1 in cellular and animal models of frataxin deficiency, and in cells from FRDA patients, who have marked insulin resistance. Finally, we show that genetic modulation of the PPARγ pathway affects frataxin levels in vitro, supporting PPARγ as a novel therapeutic target in FRDA

    Two New Pimelic Diphenylamide HDAC Inhibitors Induce Sustained Frataxin Upregulation in Cells from Friedreich's Ataxia Patients and in a Mouse Model

    Get PDF
    BACKGROUND: Friedreich's ataxia (FRDA), the most common recessive ataxia in Caucasians, is due to severely reduced levels of frataxin, a highly conserved protein, that result from a large GAA triplet repeat expansion within the first intron of the frataxin gene (FXN). Typical marks of heterochromatin are found near the expanded GAA repeat in FRDA patient cells and mouse models. Histone deacetylase inhibitors (HDACIs) with a pimelic diphenylamide structure and HDAC3 specificity can decondense the chromatin structure at the FXN gene and restore frataxin levels in cells from FRDA patients and in a GAA repeat based FRDA mouse model, KIKI, providing an appealing approach for FRDA therapeutics. METHODOLOGY/PRINCIPAL FINDINGS: In an effort to further improve the pharmacological profile of pimelic diphenylamide HDACIs as potential therapeutics for FRDA, we synthesized additional compounds with this basic structure and screened them for HDAC3 specificity. We characterized two of these compounds, 136 and 109, in FRDA patients' peripheral blood lymphocytes and in the KIKI mouse model. We tested their ability to upregulate frataxin at a range of concentrations in order to determine a minimal effective dose. We then determined in both systems the duration of effect of these drugs on frataxin mRNA and protein, and on total and local histone acetylation. The effects of these compounds exceeded the time of direct exposure in both systems. CONCLUSIONS/SIGNIFICANCE: Our results support the pre-clinical development of a therapeutic approach based on pimelic diphenylamide HDACIs for FRDA and provide information for the design of future human trials of these drugs, suggesting an intermittent administration of the drug.Journal ArticleResearch Support, N.I.H. ExtramuralResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Protocol of a randomized, double-blind, placebo-controlled, parallel-group, multicentre study of the efficacy and safety of nicotinamide in patients with Friedreich ataxia (NICOFA)

    Get PDF
    Introduction: Currently, no treatment that delays with the progression of Friedreich ataxia is available. In the majority of patients Friedreich ataxia is caused by homozygous pathological expansion of GAA repeats in the first intron of the FXN gene. Nicotinamide acts as a histone deacetylase inhibitor. Dose escalation studies have shown, that short term treatment with dosages of up to 4 g/day increase the expression of FXN mRNA and frataxin protein up to the levels of asymptomatic heterozygous gene carriers. The long-term effects and the effects on clinical endpoints, activities of daily living and quality of life are unknown.Methods: The aim of the NICOFA study is to investigate the efficacy and safety of nicotinamide for the treatment of Friedreich ataxia over 24 months. An open-label dose adjustment wash-in period with nicotinamide (phase A: weeks 1-4) to the individually highest tolerated dose of 2-4 g nicotinamide/day will be followed by a 2 (nicotinamide group): 1 (placebo group) randomization (phase B: weeks 5-104). In the nicotinamide group, patients will continue with their individually highest tolerated dose between 2 and 4 g/d per os once daily and the placebo group patients will be receiving matching placebo. Safety assessments will consist of monitoring and recording of all adverse events and serious adverse events, regular monitoring of haematology, blood chemistry and urine values, regular measurement of vital signs and the performance of physical examinations including cardiological signs. The primary outcome is the change in the Scale for the Assessment and Rating of Ataxia (SARA) over time as compared with placebo in patients with Friedreich ataxia based on the linear mixed effect model (LMEM) model. Secondary endpoints are measures of quality of life, functional motor and cognitive measures, clinician's and patient's global impression-change scales as well as the up-regulation of the frataxin protein level, safety and survival/death.Perspective: The NICOFA study represents one of the first attempts to assess the clinical efficacy of an epigenetic therapeutic intervention for this disease and will provide evidence of possible disease modifying effects of nicotinamide treatment in patients with Friedreich ataxia

    Longitudinal changes of SARA scale in Friedreich ataxia: Strong influence of baseline score and age at onset

    Get PDF
    BACKGROUND: The Scale for Assessment and Rating of Ataxia (SARA) is widely used in different types of ataxias and has been chosen as the primary outcome measure in the European natural history study for Friedreich ataxia (FA). METHODS: To assess distribution and longitudinal changes of SARA scores and its single items, we analyzed SARA scores of 502 patients with typical-onset FA (<25 years) participating in the 4-year prospective European FA Consortium for Translational Studies (EFACTS). Pattern of disease progression was determined using linear mixed-effects regression models. The chosen statistical model was re-fitted in order to estimate parameters and predict disease progression. Median time-to-change and rate of score progression were estimated using the Kaplan-Meier method and weighted linear regression models, respectively. RESULTS: SARA score at study enrollment and age at onset were the major predictive factors of total score progression during the 4-year follow-up. To a less extent, age at evaluation also influenced the speed of SARA progression, while disease duration did not improve the prediction of the statistical model. Temporal dynamics of total SARA and items showed a great variability in the speed of score increase during disease progression. Gait item had the highest annual progression rate, with median time for one-point score increase of 1 to 2 years. INTERPRETATION: Analyses of statistical properties of SARA suggest a variable sensitivity of the scale at different disease stages, and provide important information for population selection and result interpretation in future clinical trials

    Clinical management guidelines for Friedreich ataxia : best practice in rare diseases

    Get PDF
    BACKGROUND: Individuals with Friedreich ataxia (FRDA) can find it difficult to access specialized clinical care. To facilitate best practice in delivering healthcare for FRDA, clinical management guidelines (CMGs) were developed in 2014. However, the lack of high-certainty evidence and the inadequacy of accepted metrics to measure health status continues to present challenges in FRDA and other rare diseases. To overcome these challenges, the Grading of Recommendations Assessment and Evaluation (GRADE) framework for rare diseases developed by the RARE-Bestpractices Working Group was adopted to update the clinical guidelines for FRDA. This approach incorporates additional strategies to the GRADE framework to support the strength of recommendations, such as review of literature in similar conditions, the systematic collection of expert opinion and patient perceptions, and use of natural history data. METHODS: A panel representing international clinical experts, stakeholders and consumer groups provided oversight to guideline development within the GRADE framework. Invited expert authors generated the Patient, Intervention, Comparison, Outcome (PICO) questions to guide the literature search (2014 to June 2020). Evidence profiles in tandem with feedback from individuals living with FRDA, natural history registry data and expert clinical observations contributed to the final recommendations. Authors also developed best practice statements for clinical care points that were considered self-evident or were not amenable to the GRADE process. RESULTS: Seventy clinical experts contributed to fifteen topic-specific chapters with clinical recommendations and/or best practice statements. New topics since 2014 include emergency medicine, digital and assistive technologies and a stand-alone section on mental health. Evidence was evaluated according to GRADE criteria and 130 new recommendations and 95 best practice statements were generated. DISCUSSION AND CONCLUSION: Evidence-based CMGs are required to ensure the best clinical care for people with FRDA. Adopting the GRADE rare-disease framework enabled the development of higher quality CMGs for FRDA and allows individual topics to be updated as new evidence emerges. While the primary goal of these guidelines is better outcomes for people living with FRDA, the process of developing the guidelines may also help inform the development of clinical guidelines in other rare diseases
    corecore