14 research outputs found

    Targeting DNA Damage Response and Replication Stress in Pancreatic Cancer

    Get PDF
    Background and aims: Continuing recalcitrance to therapy cements pancreatic cancer (PC) as the most lethal malignancy, which is set to become the second leading cause of cancer death in our society. The study aim was to investigate the association between DNA damage response (DDR), replication stress and novel therapeutic response in PC to develop a biomarker driven therapeutic strategy targeting DDR and replication stress in PC. Methods: We interrogated the transcriptome, genome, proteome and functional characteristics of 61 novel PC patient-derived cell lines to define novel therapeutic strategies targeting DDR and replication stress. Validation was done in patient derived xenografts and human PC organoids. Results: Patient-derived cell lines faithfully recapitulate the epithelial component of pancreatic tumors including previously described molecular subtypes. Biomarkers of DDR deficiency, including a novel signature of homologous recombination deficiency, co-segregates with response to platinum (P < 0.001) and PARP inhibitor therapy (P < 0.001) in vitro and in vivo. We generated a novel signature of replication stress with which predicts response to ATR (P < 0.018) and WEE1 inhibitor (P < 0.029) treatment in both cell lines and human PC organoids. Replication stress was enriched in the squamous subtype of PC (P < 0.001) but not associated with DDR deficiency. Conclusions: Replication stress and DDR deficiency are independent of each other, creating opportunities for therapy in DDR proficient PC, and post-platinum therapy

    Children must be protected from the tobacco industry's marketing tactics.

    Get PDF

    Impaired P2X1 Receptor–Mediated Adhesion in Eosinophils from Asthmatic Patients

    Full text link
    Eosinophils play an important role in the pathogenesis of asthma and can be activated by extracellular nucleotides released following cell damage or inflammation. For example, increased ATP concentrations were reported in bronchoalveolar lavage fluids of asthmatic patients. Although eosinophils are known to express several subtypes of P2 receptors for extracellular nucleotides, their function and contribution to asthma remain unclear. In this article, we show that transcripts for P2X1, P2X4, and P2X5 receptors were expressed in healthy and asthmatic eosinophils. The P2X receptor agonist α,β-methylene ATP (α,β-meATP; 10 μM) evoked rapidly activating and desensitizing inward currents (peak 18 ± 3 pA/pF at −60 mV) in healthy eosinophils, typical of P2X1 homomeric receptors, which were abolished by the selective P2X1 antagonist NF449 (1 μM) (3 ± 2 pA/pF). α,β-meATP–evoked currents were smaller in eosinophils from asthmatic patients (8 ± 2 versus 27 ± 5 pA/pF for healthy) but were enhanced following treatment with a high concentration of the nucleotidase apyrase (17 ± 5 pA/pF for 10 IU/ml and 11 ± 3 pA/pF for 0.32 IU/ml), indicating that the channels are partially desensitized by extracellular nucleotides. α,β-meATP (10 μM) increased the expression of CD11b activated form in eosinophils from healthy, but not asthmatic, donors (143 ± 21% and 108 ± 11% of control response, respectively). Furthermore, α,β-meATP increased healthy (18 ± 2% compared with control 10 ± 1%) but not asthmatic (13 ± 1% versus 10 ± 0% for control) eosinophil adhesion. Healthy human eosinophils express functional P2X1 receptors whose activation leads to eosinophil αMβ2 integrin–dependent adhesion. P2X1 responses are constitutively reduced in asthmatic compared with healthy eosinophils, probably as the result of an increase in extracellular nucleotide concentration

    Impaired P2X1 Receptor–Mediated Adhesion in Eosinophils from Asthmatic Patients

    Full text link
    Eosinophils play an important role in the pathogenesis of asthma and can be activated by extracellular nucleotides released following cell damage or inflammation. For example, increased ATP concentrations were reported in bronchoalveolar lavage fluids of asthmatic patients. Although eosinophils are known to express several subtypes of P2 receptors for extracellular nucleotides, their function and contribution to asthma remain unclear. In this article, we show that transcripts for P2X1, P2X4, and P2X5 receptors were expressed in healthy and asthmatic eosinophils. The P2X receptor agonist α,β-methylene ATP (α,β-meATP; 10 μM) evoked rapidly activating and desensitizing inward currents (peak 18 ± 3 pA/pF at −60 mV) in healthy eosinophils, typical of P2X1 homomeric receptors, which were abolished by the selective P2X1 antagonist NF449 (1 μM) (3 ± 2 pA/pF). α,β-meATP–evoked currents were smaller in eosinophils from asthmatic patients (8 ± 2 versus 27 ± 5 pA/pF for healthy) but were enhanced following treatment with a high concentration of the nucleotidase apyrase (17 ± 5 pA/pF for 10 IU/ml and 11 ± 3 pA/pF for 0.32 IU/ml), indicating that the channels are partially desensitized by extracellular nucleotides. α,β-meATP (10 μM) increased the expression of CD11b activated form in eosinophils from healthy, but not asthmatic, donors (143 ± 21% and 108 ± 11% of control response, respectively). Furthermore, α,β-meATP increased healthy (18 ± 2% compared with control 10 ± 1%) but not asthmatic (13 ± 1% versus 10 ± 0% for control) eosinophil adhesion. Healthy human eosinophils express functional P2X1 receptors whose activation leads to eosinophil αMβ2 integrin–dependent adhesion. P2X1 responses are constitutively reduced in asthmatic compared with healthy eosinophils, probably as the result of an increase in extracellular nucleotide concentration

    Precision medicine for advanced pancreas cancer : the Individualized Molecular Pancreatic Cancer Therapy (IMPaCT) trial

    No full text
    Purpose: Personalized medicine strategies using genomic profiling are particularly pertinent for pancreas cancer. The Individualized Molecular Pancreatic Cancer Therapy (IMPaCT) trial was initially designed to exploit results from genome sequencing of pancreatic cancer under the auspices of the International Cancer Genome Consortium (ICGC) in Australia. Sequencing revealed small subsets of patients with aberrations in their tumor genome that could be targeted with currently available therapies. Experimental Design: The pilot stage of the IMPaCT trial assessed the feasibility of acquiring suitable tumor specimens for molecular analysis and returning high-quality actionable genomic data within a clinically acceptable timeframe. We screened for three molecular targets: HER2 amplification; KRAS wild-type; and mutations in DNA damage repair pathways (BRCA1, BRCA2, PALB2, ATM). Results: Tumor biopsy and archived tumor samples were collected from 93 patients and 76 were screened. To date 22 candidate cases have been identified: 14 KRAS wild-type, 5 cases of HER2 amplification, 2 mutations in BRCA2, and 1 ATM mutation. Median time from consent to the return of validated results was 21.5 days. An inability to obtain a biopsy or insufficient tumor content in the available specimen were common reasons for patient exclusion from molecular analysis while deteriorating performance status prohibited a number of patients from proceeding in the study. Conclusions: Documenting the feasibility of acquiring and screening biospecimens for actionable molecular targets in real time will aid other groups embarking on similar trials. Key elements include the need to better prescreen patients, screen more patients, and offer more attractive clinical trial options.9 page(s

    HNF4A and GATA6 loss reveals therapeutically actionable subtypes in pancreatic cancer

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) can be divided into transcriptomic subtypes with two broad lineages referred to as classical (pancreatic) and squamous. We find that these two subtypes are driven by distinct metabolic phenotypes. Loss of genes that drive endodermal lineage specification, HNF4A and GATA6, switch metabolic profiles from classical (pancreatic) to predominantly squamous, with glycogen synthase kinase 3 beta (GSK3b) a key regulator of glycolysis. Pharmacological inhibition of GSK3b results in selective sensitivity in the squamous subtype; however, a subset of these squamous patient-derived cell lines (PDCLs) acquires rapid drug tolerance. Using chromatin accessibility maps, we demonstrate that the squamous subtype can be further classified using chromatin accessibility to predict responsiveness and tolerance to GSK3b inhibitors. Our findings demonstrate that distinct patterns of chromatin accessibility can be used to identify patient subgroups that are indistinguishable by gene expression profiles, highlighting the utility of chromatin-based biomarkers for patient selection in the treatment of PDAC

    Proceedings of the First International Conference on Stepped Wedge Trial Design: York, UK, 10 March 2016

    No full text
    I1 Introduction Mona Kanaan, Noreen Dadirai Mdege, Ada Keding O1 The HiSTORIC trial: a hybrid before-and-after and stepped wedge design RA Parker, N Mills, A Shah, F Strachan, C Keerie, CJ Weir O2 Stepped wedge trials with non-uniform correlation structure Andrew Forbes, Karla Hemming O3 Challenges and solutions for the operationalisation of the ENHANCE study: a pilot stepped wedge trial within a general practice setting Sarah A Lawton, Emma Healey, Martyn Lewis, Elaine Nicholls, Clare Jinks, Valerie Tan, Andrew Finney, Christian D Mallen, on behalf of the ENHANCE Study Team O4 Early lessons from the implementation of a stepped wedge trial design investigating the effectiveness of a training intervention in busy health care settings: the Thistle study Erik Lenguerrand, Graeme MacLennan, John Norrie, Siladitya Bhattacharya, Tim Draycott, on behalf of the Thistle group O5 Sample size calculation for longitudinal cluster randomised trials: a unified framework for closed cohort and repeated cross-section designs Richard Hooper, Steven Teerenstra, Esther de Hoop, Sandra Eldridge O6 Restricted randomisation schemes for stepped-wedge studies with a cluster-level covariate Alan Girling, Monica Taljaard O7 A flexible modelling of the time trend for the analysis of stepped wedge trials: results of a simulation study Gian Luca Di Tanna, Antonio Gasparrini P1 Tackling acute kidney injury – a UK stepped wedge clinical trial of hospital-level quality improvement interventions Anna Casula, Fergus Caskey, Erik Lenguerrand, Shona Methven, Stephanie MacNeill, Margaret May, Nicholas Selby P2 Sample size considerations for quantifying secondary bacterial transmission in a stepped wedge trial of influenza vaccine Leon Danon, Hannah Christensen, Adam Finn, Margaret May P3 Sample size calculation for time-to-event data in stepped wedge cluster randomised trials Fumihito Takanashi, Ada Keding, Simon Crouch, Mona Kanaan P4 Sample size calculations for stepped-wedge cluster randomised trials with unequal cluster sizes Caroline A. Kristunas, Karen L. Smith, Laura J. Gray P5 The design of stepped wedge trials with unequal cluster sizes John N.S. Matthews P6 Promoting Recruitment using Information Management Efficiently (PRIME): a stepped wedge SWAT (study-within-a-trial) R Al-Shahi Salman, RA Parker, A Maxwell, M Dennis, A Rudd, CJ Weir P7 Implications of misspecified mixed effect models in stepped wedge trial analysis: how wrong can it be? Jennifer A Thompson, Katherine L Fielding, Calum Davey, Alexander M Aiken, James R Hargreaves, Richard J Hayes S1 Stepped Wedge Designs with Multiple Interventions Vivian H Lyons, Lingyu Li, James Hughes, Ali Rowhani-Rahbar S2 Analysis of the cross-sectional stepped wedge cluster randomised trial Karla Hemming, Monica Taljaard, Andrew Forbe
    corecore