674 research outputs found

    Porosity and size gradation of saturated gravel with percolated fines

    Get PDF
    This is the accepted version of the following article: [Núñez-González, F., Martín-Vide, J. P., Kleinhans, M. G. (2016), Porosity and size gradation of saturated gravel with percolated fines. Sedimentology, 63: 1209–1232. doi: 10.1111/sed.12257], which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1111/sed.12257/abstractFine particles may infiltrate through coarse alluvial beds and eventually saturate the subsurface pore space. It is essential to understand the conditions that lead to bed saturation, and to forecast the packing characteristics of saturated beds to assess the effect of excess fine sediment supply on a number of processes that occur in the stream-sediment boundary. To address this problem, in this study, a new method is introduced to predict the grain-size distribution for the saturated condition, and the resulting porosity decrease, given the characteristics of the bed and the supplied sediments. The new method consists of the numerical aggregation of infilling fines in a finite bed volume, during which the bed properties change to affect further infilling. An existing semi-empirical, particle packing model is implemented to identify these properties. It is shown that these types of models are adequate to describe regimes of natural sediment fabric quantitatively, and are thus useful tools in the analysis of sediment infiltration processes. Unlike previous developments to quantify saturated bed conditions, which assume that the supplied material is uniform and finer than the bed pore openings, the method developed herein considers poorly sorted fines, and can identify size fractions that are able to ingress into the bed due to being smaller than the particles that form the bed structure. Application of the new method to published experimental data showed that the final content of infiltrated fines is strongly sensitive to the initial bed packing density, highlighting the need to measure and understand open-work gravel deposits. In addition, the new method was shown to be suitable for assessing the degree of bed saturation, when it was applied to a published data set of field samples.Peer ReviewedPostprint (author's final draft

    A simple prescription for simulating and characterizing gravitational arcs

    Get PDF
    Simple models of gravitational arcs are crucial to simulate large samples of these objects with full control of the input parameters. These models also provide crude and automated estimates of the shape and structure of the arcs, which are necessary when trying to detect and characterize these objects on massive wide area imaging surveys. We here present and explore the ArcEllipse, a simple prescription to create objects with shape similar to gravitational arcs. We also present PaintArcs, which is a code that couples this geometrical form with a brightness distribution and adds the resulting object to images. Finally, we introduce ArcFitting, which is a tool that fits ArcEllipses to images of real gravitational arcs. We validate this fitting technique using simulated arcs and apply it to CFHTLS and HST images of tangential arcs around clusters of galaxies. Our simple ArcEllipse model for the arc, associated to a S\'ersic profile for the source, recovers the total signal in real images typically within 10%-30%. The ArcEllipse+S\'ersic models also automatically recover visual estimates of length-to-width ratios of real arcs. Residual maps between data and model images reveal the incidence of arc substructure. They may thus be used as a diagnostic for arcs formed by the merging of multiple images. The incidence of these substructures is the main factor preventing ArcEllipse models from accurately describing real lensed systems.Comment: 12 pages, 11 figures, accepted for publication in A&

    Extracellular Vesicles, the Road toward the Improvement of ART Outcomes

    Get PDF
    Nowadays, farm animal industries use assisted reproductive technologies (ART) as a tool to manage herds’ reproductive outcomes, for a fast dissemination of genetic improvement as well as to bypass subfertility issues. ART comprise at least one of the following procedures: collection and handling of oocytes, sperm, and embryos in in vitro conditions. Therefore, in these conditions, the interaction with the oviductal environment of gametes and early embryos during fertilization and the first stages of embryo development is lost. As a result, embryos obtained in in vitro fertilization (IVF) have less quality in comparison with those obtained in vivo, and have lower chances to implant and develop into viable offspring. In addition, media currently used for IVF are very similar to those empirically developed more than five decades ago. Recently, the importance of extracellular vesicles (EVs) in the fertility process has flourished. EVs are recognized as effective intercellular vehicles for communication as they deliver their cargo of proteins, lipids, and genetic material. Thus, during their transit through the female reproductive tract both gametes, oocyte and spermatozoa (that previously encountered EVs produced by male reproductive tract) interact with EVs produced by the female reproductive tract, passing them important information that contributes to a successful fertilization and embryo development. This fact highlights that the reproductive tract EVs cargo has an important role in reproductive events, which is missing in current ART media. This review aims to recapitulate recent advances in EVs functions on the fertilization process, highlighting the latest proposals with an applied approach to enhance ART outcome through EV utilization as an additive to the media of current ART procedures

    Coeficientes de resistencia, transporte de sedimentos y caudal dominante en regiones semiáridas

    Get PDF
    En regiones de morfología abrupta y régimen irregular de precipitaciones las crecidas suelen presentarse llevando una gran cantidad de transporte de sedimentos. Si bien es usual que en las regiones semiáridas se presenten flujos hiperconcentrados, el cambio climático incidirá en que estos sean cada vez más acusados, lo que obligará a controlarlos para minimizar sus efectos destructivos. Con el fin de poder diseñar sistemas efectivos de control y captación de flujos en zonas semiáridas será necesario, como primer paso, calcular la capacidad de transporte de sedimentos. En este sentido, se vienen realizando investigaciones durante décadas, pero sin obtener todavía una ecuación realmente satisfactoria que interrelacione adecuadamente las propiedades del fluido y del sedimento. Uno de los objetivos del trabajo que se está llevando a cabo es aplicar la metodología elaborada por Castillo et al (2000 y 2000b) y Castillo (2004 y 2007) para el cálculo del transporte de sedimentos en el barranco de las Angustias (Isla de la Palma), generalizándola para su aplicación en zonas semiáridas. De esta manera se presentan en el siguiente artículo un análisis de los elementos fundamentales que nos permite conocer la capacidad de transporte de sedimentos en los cauces de estas zonas; así las formulaciones de cálculo de transporte de sedimentos y la estimación de los coeficientes de resistencia para flujos macrorrugosos, los límites de aplicación de dichas formulaciones y finalmente, la determinación del caudal dominante

    A dark energy multiverse

    Get PDF
    We present cosmic solutions corresponding to universes filled with dark and phantom energy, all having a negative cosmological constant. All such solutions contain infinite singularities, successively and equally distributed along time, which can be either big bang/crunchs or big rips singularities. Classicaly these solutions can be regarded as associated with multiverse scenarios, being those corresponding to phantom energy that may describe the current accelerating universe

    Respiratory research networks in Europe and beyond: aims, achievements and aspirations for the 21st century

    Get PDF
    Healthcare-associated infection, such as intensive care unit (ICU)-related respiratory infections, remain the most frequently encountered morbidity of ICU admission, prolonging hospital stay and increasing mortality rates. The epidemiology of ICU-related respiratory infections, particularly nonventilated ICU-associated pneumonia and ventilator-associated tracheobronchitis, appears to be quite different among different countries. European countries have different prevalence, patterns and mechanism of resistance, as well as different treatments chosen by different attending physicians. The classical clinical research process in respiratory infections consists of the following loop: 1) identification of knowledge gaps; 2) systematic review and search for adequate answers; 3) generation of study hypotheses; 4) design of study protocols; 5) collection clinical data; 6) analysis and interpretation of the results; and 7) implementation of the results in clinical practic

    Porosity and size gradation of saturated gravel with percolated fines

    Get PDF
    Fine particles may infiltrate through coarse alluvial beds and eventually saturate the subsurface pore space. It is essential to understand the conditions that lead to bed saturation, and to forecast the packing characteristics of saturated beds to assess the effect of excess fine sediment supply on a number of processes that occur in the stream-sediment boundary. To address this problem, in this study, a new method is introduced to predict the grain-size distribution for the saturated condition, and the resulting porosity decrease, given the characteristics of the bed and the supplied sediments. The new method consists of the numerical aggregation of infilling fines in a finite bed volume, during which the bed properties change to affect further infilling. An existing semi-empirical, particle packing model is implemented to identify these properties. It is shown that these types of models are adequate to describe regimes of natural sediment fabric quantitatively, and are thus useful tools in the analysis of sediment infiltration processes. Unlike previous developments to quantify saturated bed conditions, which assume that the supplied material is uniform and finer than the bed pore openings, the method developed herein considers poorly sorted fines, and can identify size fractions that are able to ingress into the bed due to being smaller than the particles that form the bed structure. Application of the new method to published experimental data showed that the final content of infiltrated fines is strongly sensitive to the initial bed packing density, highlighting the need to measure and understand open-work gravel deposits. In addition, the new method was shown to be suitable for assessing the degree of bed saturation, when it was applied to a published data set of field samples

    Enose Lab made with vacuum sampling: Quantitative applications

    Get PDF
    Producción CientíficaA lab-made electronic nose (Enose) with vacuum sampling and a sensor array, comprising nine metal oxide semiconductor Figaro gas sensors, was tested for the quantitative analysis of vapor–liquid equilibrium, described by Henry’s law, of aqueous solutions of organic compounds: three alcohols (i.e., methanol, ethanol, and propanol) or three chemical compounds with different functional groups (i.e., acetaldehyde, ethanol, and ethyl acetate). These solutions followed a fractional factorial design to guarantee orthogonal concentrations. Acceptable predictive ridge regression models were obtained for training, with RSEs lower than 7.9, R2 values greater than 0.95, slopes varying between 0.84 and 1.00, and intercept values close to the theoretical value of zero. Similar results were obtained for the test data set: RSEs lower than 8.0, R2 values greater than 0.96, slopes varying between 0.72 and 1.10, and some intercepts equal to the theoretical value of zero. In addition, the total mass of the organic compounds of each aqueous solution could be predicted, pointing out that the sensors measured mainly the global contents of the vapor phases. The satisfactory quantitative results allowed to conclude that the Enose could be a useful tool for the analysis of volatiles from aqueous solutions containing organic compounds for which Henry’s law is applicable.Fundación para la Ciencia y la Tecnología (FCT, Portugal) y Fondo Europeo de Desarrollo Regional (FEDER) under Programme PT2020 - (grants UID/AGR/00690/2019 y LA/P/0007/2020

    Circadian rhythms regulate the environmental responses of net CO2 exchange in bean and cotton canopies

    Get PDF
    Studies on the dependence of the rates of ecosystem gas exchange on environmental parameters often rely on the up-scaling of leaf-level response curves ('bottom-up' approach), and/or the down-scaling of ecosystem fluxes ('top-down' approach), where one takes advantage of the natural diurnal covariation between the parameter of interest and photosynthesis rates. Partly independent from environmental variation, molecular circadian clocks drive ∼24 h oscillations in leaf-level photosynthesis, stomatal conductance and other physiological processes in plants under controlled laboratory conditions. If present and of sufficient magnitude at ecosystem scales, circadian regulation could lead to different results when using the bottom-up approach (where circadian regulation exerts a negligible influence over fluxes because the environment is modified rapidly) relative to the top-down approach (where circadian regulation could affect fluxes as it requires the passage of a few hours). Here we dissected the drivers of diurnal net CO2 exchange in canopies of an annual herb (bean) and of a perennial shrub (cotton) through a set of experimental manipulations to test for the importance of circadian regulation of net canopy CO2 exchange, relative to that of temperature and vapor pressure deficit, and to understand whether circadian regulation could affect the derivation of environmental flux dependencies. Contrary to conventional wisdom, we observed how circadian regulation exerted controls over net CO2 exchange that were of similar magnitude to the controls exerted by direct physiological responses to temperature and vapor pressure deficit. Diurnal patterns of net CO2 exchange could only be explained by considering effects of environmental responses combined with circadian effects. Consequently, we observed significantly different results when inferring the dependence of photosynthesis over temperature and vapor pressure deficit when using the top-down and the bottom up approaches.We remain indebted to E. Gerardeau, D. Dessauw, J. Jean, P. Prudent (Aïda CIRAD), J.-J. Drevon, C. Pernot (Eco&Sol INRA), B. Buatois, A. Rocheteau (CEFE CNRS), A. Pra, A. Mokhtar and the full Ecotron team, in particular C. Escape, for outstanding technical assistance during experiment set-up, plant cultivation and measurements. Earlier versions of the manuscript benefitted from comments by M. Dietze, B. Medlyn, R. Duursma and Y.-S. Lin. This study benefited from the CNRS human and technical resources allocated to the ECOTRONS Research Infrastructures as well as from the state allocation ‘Investissement d'Avenir’ ANR-11-INBS-0001, ExpeER Transnational Access program, Ramón y Cajal fellowships (RYC-2012-10970 to VRD and RYC-2008-02050 to JPF), the Erasmus Mundus Master Course Mediterranean Forestry and Natural Resources Management (MEDfOR) and internal grants from UWS-HIE to VRD and ZALF to AG. We thank the Associate Editor T. Vesala and two anonymous reviewers for their help to improve this manuscript
    • …
    corecore