224 research outputs found

    Runoff properties of extreme discharges on Parana and Uruguay rivers

    Get PDF
    Climate variability in different spatial scales is a study area which has reached interest in application, especially during de last years. River discharges can be considered as a robust integrator of the properties of the basin; under these premises the goal of this work is to analyse flows from the Parana and Uruguay rivers in several gauge stations ´ and study the behavior of positive and negative anomalies and their extremes. The variable to be analysed was defined as the number of anomalies with the same sign per year. Results show that the structures are different for both rivers, which implies a different stochastic process. Identical representativeness was found between the anomaly series in each river. The risk estimation of extremes in both rivers indicates that it is possible to establish a decision model. Additionally, the series of annual number of anomalies presented a climatic jump in the seventies, for both rivers.Fil: Vargas, Walter Mario. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bischoff, S.. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; ArgentinaFil: Naumann, Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Marcuzzi, E.. Plan Nacional de Manejo del Fuego; Argentin

    Design optimization of RF lines in vacuum environment for the MITICA experiment

    Get PDF
    This contribution regards the Radio Frequency (RF) transmission line of the Megavolt ITER Injector and Concept Advancement (MITICA) experiment. The original design considered copper coaxial lines of 1″ 5/8, but thermal simulations under operating conditions showed maximum temperatures of the lines at regime not compatible with the prescription of the component manufacturer. Hence, an optimization of the design was necessary. Enhancing thermal radiation and increasing the conductor size were considered for design optimization: thermal analyses were carried out to calculate the temperature of MITICA RF lines during operation, as a function of the emissivity value and of other geometrical parameters. Five coating products to increase the conductor surface emissivity were tested, measuring the outgassing behavior of the selected products and the obtained emissivity values

    Quantum non-equilibrium dynamics of Rydberg gases in the presence of dephasing noise of different strengths

    Get PDF
    In the presence of strong dephasing noise the dynamics of Rydberg gases becomes effectively classical, due to the rapid decay of quantum superpositions between atomic levels. Recently a great deal of attention has been devoted to the stochastic dynamics that emerges in that limit, revealing several interesting features, including kinetically constrained glassy behaviour, self-similarity and aggregation effects. However, the non-equilibrium physics of these systems, in particular in the regime where coherent and dissipative processes contribute on equal footing, is yet far from being understood. To explore this we study the dynamics of a small one-dimensional Rydberg lattice gas subject to dephasing noise by numerically integrating the quantum master equation. We interpolate between the coherent and the strongly dephased regime by defining a generalised concept of a blockade length. We find indications that the main features observed in the strongly dissipative limit persist when the dissipation is not strong enough to annihilate quantum coherences at the dynamically relevant time scales. These features include the existence of a time-dependent Rydberg blockade radius, and a growth of the density of excitations which is compatible with the power-law behaviour expected in the classical limit

    Non-equilibrium universality in the dynamics of dissipative cold atomic gases

    Get PDF
    The theory of continuous phase transitions predicts the universal collective properties of a physical system near a critical point, which for instance manifest in characteristic power-law behaviours of physical observables. The well-established concept at or near equilibrium, universality, can also characterize the physics of systems out of equilibrium. The most fundamental instance of a genuine non-equilibrium phase transition is the directed percolation universality class, where a system switches from an absorbing inactive to a fluctuating active phase. Despite being known for several decades it has been challenging to find experimental systems that manifest this transition. Here we show theoretically that signatures of the directed percolation universality class can be observed in an atomic system with long range interactions. Moreover, we demonstrate that even mesoscopic ensembles — which are currently studied experimentally — are sufficient to observe traces of this non-equilibrium phase transition in one, two and three dimensions

    Non-equilibrium fluctuations and metastability arising from non-additive interactions in dissipative multi-component Rydberg gases

    Get PDF
    We study the out-of-equilibrium dynamics of dissipative gases of atoms excited to two or more high-lying Rydberg states. This situation bears interesting similarities to classical binary (in general p-ary) mixtures of particles. The effective forces between the components are determined by the inter-level and intra-level interactions of Rydberg atoms. These systems permit to explore new parameter regimes which are physically inaccessible in a classical setting, for example one in which the mixtures exhibit non-additive interactions. In this situation the out-of-equilibrium evolution is characterized by the formation of metastable domains that reach partial equilibration long before the attainment of stationarity. In experimental settings with mesoscopic sizes, this collective behavior may in fact take the appearance of dynamic symmetry breaking

    Non-adiabatic quantum state preparation and quantum state transport in chains of Rydberg atoms

    Get PDF
    Motivated by recent progress in the experimental manipulation of cold atoms in optical lattices, we study three different protocols for non-adiabatic quantum state preparation and state transport in chains of Rydberg atoms. The protocols we discuss are based on the blockade mechanism between atoms which, when excited to a Rydberg state, interact through a van der Waals potential, and rely on single-site addressing. Specifically, we discuss protocols for efficient creation of an antiferromagnetic GHZ state, a class of matrix product states including a so-called Rydberg crystal and for the state transport of a single-qubit quantum state between two ends of a chain of atoms. We identify system parameters allowing for the operation of the protocols on timescales shorter than the lifetime of the Rydberg states while yielding high fidelity output states. We discuss the effect of positional disorder on the resulting states and comment on limitations due to other sources of noise such as radiative decay of the Rydberg states. The proposed protocols provide a testbed for benchmarking the performance of quantum information processing platforms based on Rydberg atoms

    Start of SPIDER operation towards ITER neutral beams

    Get PDF
    Heating Neutral Beam (HNB) Injectors will constitute the main plasma heating and current drive tool both in ITER and JT60-SA, which are the next major experimental steps for demonstrating nuclear fusion as viable energy source. In ITER, in order to achieve the required thermonuclear fusion power gain Q=10 for short pulse operation and Q=5 for long pulse operation (up to 3600s), two HNB injectors will be needed [1], each delivering a total power of about 16.5 MW into the magnetically-confined plasma, by means of neutral hydrogen or deuterium particles having a specific energy of about 1 MeV. Since only negatively charged particles can be efficiently neutralized at such energy, the ITER HNB injectors [2] will be based on negative ions, generated by caesium-catalysed surface conversion of atoms in a radio-frequency driven plasma source. A negative deuterium ion current of more than 40 A will be extracted, accelerated and focused in a multi-aperture, multi-stage electrostatic accelerator, having 1280 apertures (~ 14 mm diam.) and 5 acceleration stages (~200 kV each) [3]. After passing through a narrow gas-cell neutralizer, the residual ions will be deflected and discarded, whereas the neutralized particles will continue their trajectory through a duct into the tokamak vessels to deliver the required heating power to the ITER plasma for a pulse duration of about 3600 s. Although the operating principles and the implementation of the most critical parts of the injector have been tested in different experiments, the ITER NBI requirements have never been simultaneously attained. In order to reduce the risks and to optimize the design and operating procedures of the HNB for ITER, a dedicated Neutral Beam Test Facility (NBTF) [4] has been promoted by the ITER Organization with the contribution of the European Union\u2019s Joint Undertaking for ITER and of the Italian Government, with the participation of the Japanese and Indian Domestic Agencies (JADA and INDA) and of several European laboratories, such as IPP-Garching, KIT-Karlsruhe, CCFE-Culham, CEA-Cadarache. The NBTF, nicknamed PRIMA, has been set up at Consorzio RFX in Padova, Italy [5]. The planned experiments will verify continuous HNB operation for one hour, under stringent requirements for beam divergence (< 7 mrad) and aiming (within 2 mrad). To study and optimise HNB performances, the NBTF includes two experiments: MITICA, full-scale NBI prototype with 1 MeV particle energy and SPIDER, with 100 keV particle energy and 40 A current, aiming at testing and optimizing the full-scale ion source. SPIDER will focus on source uniformity, negative ion current density and beam optics. In June 2018 the experimental operation of SPIDER has started

    ASTRI SST-2M: the design evolution from the prototype to the array telescope

    Get PDF
    The Cherenkov Telescope Array (CTA) observatory will represent the new frontier of imaging atmospheric Cherenkov Telescope. The simultaneous use of large, medium and small telescopes (respectively LST, MST and SST) will allow to explore the astronomy related to the very high energy domain, typical of Gamma rays, with a sensitivity, angular resolution and image quality never seen before. Within this project, ASTRI, the Italian 2 mirrors Schwarzshild-Couder configuration Small SST led by Italian National Institute of Astronomy (INAF), has moved quickly developing a 4m class telescope prototype which has been tested with results which demonstrates excellent performance as well as wide margins for further improvements. On the basis of the experiences made on the prototype, this paper focus on the design enhancements carried out for the telescope which will be part of the Cherenkov Telescope Array
    • …
    corecore