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Abstract

We study the out-of-equilibrium dynamics of dissipative gases of atoms excited to two or more high-
lying Rydberg states. This situation bears interesting similarities to classical binary (in general p-ary)
mixtures of particles. The effective forces between the components are determined by the inter-level
and intra-level interactions of Rydberg atoms. These systems permit to explore new parameter
regimes which are physically inaccessible in a classical setting, for example one in which the mixtures
exhibit non-additive interactions. In this situation the out-of-equilibrium evolution is characterized
by the formation of metastable domains that reach partial equilibration long before the attainment of
stationarity. In experimental settings with mesoscopic sizes, this collective behavior may in fact take
the appearance of dynamic symmetry breaking.

Introduction

Dissipative Rydberg gases enable the exploration of a great variety of out-of-equilibrium phenomena.
Dynamical effects that have been theoretically predicted include kinetic constrains [ 1], crystallization [2—6],
bistability [7-9], spatial correlations and density waves [10], aggregation [11, 12], antiferromagnetic order [13],
non-equilibrium phase transitions [14], classical and quantum glassiness [ 15], many-body entanglement

[16, 17] and self-similarity [ 18, 19]. Some of these phenomena, including the build-up of correlations [20-22],
crystallization [23], kinetic constraints [24], aggregation [25, 26] and bimodality [25, 27, 28] have already been
observed, which highlights the power of Rydberg gases for investigating non-equilibrium quantum dynamics.

While single-component systems, where one Rydberg transition is driven, have been the focus of many
efforts, the dynamics of multi-component Rydberg gases—i.e. systems with atoms excited to several Rydberg
states—remains largely unexplored. As recent experiments are starting to probe multiple Rydberg states [29—
32], itis important to achieve some understanding of the collective phenomena that can be expected to be found
in such systems. One can anticipate that several competing length scales will arise from the interplay between
intra-level and inter-level interactions (i.e. the interactions between atoms excited to the same or different levels,
respectively). Indeed, a few theoretical studies have started exploring this competition [33, 34].

The study of multi-component systems may help to further the strong analogies between the dynamics of
dissipative Rydberg gases and soft-matter systems [1, 12, 15]. This connection ultimately originates from the
Rydberg blockade effect [35, 36], whereby an excitation of a given atom prevents that of neighboring atoms, an
effect reminiscent of the excluded-volume interactions characteristic of soft-matter systems such as liquids and
colloids [37]. These systems are often mixtures composed of more than one kind of particle, as such dispersity
can give rise to interesting collective effects that are not present in the monodisperse case, see e.g. [38].
Furthermore, it is common when modeling soft matter computationally to consider ‘non-additive’ mixtures,
meaning mixtures where the cross interactions between different kinds of particles are not given by those
between similar kinds: for example, if particles A and B interact among themselves with typical distances o4 and

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Non-additive interactions, energy level scheme, and competing length scales. (a) Additive and non-additive interactions (see
text for definition). (b) Atomic energy levels, dephasing rates, and laser-driven transitions. (c) Competing length scales R and R, for
intra- and inter-level interactions, respectively: R > R, (R < R.)leads to alternating patterns (homogeneous regions).

op, respectively, the distance for cross interaction is such that o453 = (04 + 03)/2, asine.g. [39]. An illustration
is given in figure 1(a). While non-additive interactions are unphysical in a classical setting where particles
interact by excluded volume or similar effects, they are used to increase frustration in model liquids, thus
precluding crystallization and promoting glass formation. In dissipative Rydberg gases the non-additivity of
inter-atomic interactions is an experimentally realizable physical feature. Despite its quantum origin, such non-
additivity survives in an effectively classical limit, giving a new handle on experimentally realizable binary (or
generally p-ary) mixtures.

In this work, we elucidate the physics of multi-component dissipative Rydberg gases far from equilibrium.
We first develop a general theory for the dynamics of systems with any number of components extending an
approach that has been extensively validated in the one-component case [24, 26]. We then perform an idealized
numerical study, where different interaction strengths lead to a variety of length scales giving rise to strikingly
different dynamical regimes. The phenomenology that emerges from non-additive interactions is characterized
by the formation of domains, which are homogeneously populated by excitations of a given component when
inter-level interactions dominate, and show an alternation of components in the opposite case. Homogeneous
domains reach partial equilibration when detailed balance is achieved for the dominant atomic transition,
leading to metastable behavior. In experimental settings with mesoscopic sizes, these domains will appear as
non-equilibrium symmetry-broken states.

Theory: effective dynamics in the limit of strong dissipation

We consider a system of N atoms, each of which can be in one of p + 1levels, the ground state |0),and p > 1
Rydbergstates [1), [2), ... |p), with energies Eg < E; < E; < --- < E,. See figure 1(b) for an ilustration of the
two-component case. Atoms in the Rydberg states |s) and |s’) at positions ry and r,, interact through a power-law
potential V& = C='/|r; — r,,/* with exponent cv. For simplicity, we denote the intra-level interactions by V§,,
instead of V3;,,.. The value of the coefficients Cf’ depends on the specific structure of the atomic spectrum and
can be controlled through e.g. electric field induced Forster resonances [40] or microwave dressing [41, 42].
Typically encountered exponents are &« = 6 (van der Waals interaction) and o« = 3 (dipole-dipole interaction)
[43]. Each of the Rydberg states is resonantly coupled to the ground state by a laser field, and affected by
dephasing noise [24-26]. The dynamics of the system is governed by a Master equation of Lindblad form

0:p = Lp + D(p) [44]. The coherent part Lp = —i[Hy + Hj, p]lincludes an interaction Hamiltonian
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Hy, = ZP:Z [V,ﬁmns(k) ni™ 4+ ZV,ff,;ns(k)ns(W], (1)
s=1lk<m s'#s

andadrivingterm H; = Y7 QN | 0¥ Here, n{Y = |s)(s], o' = [s)(0] + |0} (s]and € is the

Rabi frequency of the transition between |0) and |s). The dissipator is given by D(p) = >-F_ 7, Zszl

(ns(k) pn® — % (n®, p} ), where 7, is the dephasing rate of |s) w.r.t. |0). Atomic decay is not considered, as we

are especially interested in the short time dynamics that has been probed in experiments [24, 26]. We deliberately

focus on a situation where exchange interactions can be omitted, which can be achieved by a specific choice of

Rydberg states [40].

In the limit of strong dissipation, {); < ~,, which is relevant in a number of experimental settings [24, 26],
the time evolution is governed by an stochastic dynamics along the classical states represented in p = diag(p)
[1,45]. While the effective equations of motion of the multi-component Rydberg gas are crucially important for
the rest of the paper, and simple enough as to provide physical insight into the phenomenology that is
numerically observed (which would be very hard to infer from the quantum master equation), their derivation is
relatively lengthy. We therefore include here only the main results, and give the technical details in appendix A
for the interested reader. The resulting rate equations are

L 40
Op =y —=>T® oW uol) — IO p1, )
s=1 /s k
where Z® = n® 4 |0} (0] projects on the subspace spanned by the ground state and the excited state |s) of site

k. For simplicity, we assume that the atoms sit in the sites of a chain with lattice constant a. A transition involving
the excited level |s) at site k, whether it is an excitation or a de-excitation, occurs with a rate

, 2
L, Z(Ra%ﬁ’“) +3, (REyenm 3
- + S S ,
e n B — B

where #; = r;/a. The relevant length scales are given by the intra-level, R, = a='[2C} /~,]'/*, and the inter-level
interaction parameters, R = a~1[2C / ~.J'/, which are the reduced distances at which the appearance of
excitations of a given component correlate different sites. As in classical mixtures of particles (liquids, colloids,
etc) several components coexist and their interactions are characterized by different typical length scales
depending on the components involved.

Experiments typically probe the dynamics starting from an initial state where all atoms are in the ground
state, and this will be our choice as well. At the initial stages distant excitations to any level occur independently
of each other with a rate that is O(1). This gives an ‘initial seed’ for the correlated dynamics: as soon as the
distance between excitations becomes comparable with R;and/or RS, the second term in equation (3) strongly
correlates the atoms, and the transitions between the ground state and a particular level become less likely due to
the presence of nearby excited particles (see figure 1(c)).

Phenomenology: numerical results

We next turn to a numerical exploration of the phenomenology that emerges in multi-component Rydberg
gases. As the dynamics is rich in collective effects, we start from the simplest possible case of a two-component
system with symmetric interaction parameters, R, = R, = Rand R/* = R}* = R.. The expression in brackets
on the rhs of equation (3) then becomes }~,, (R* n™ + Rn{™) /|ty — £, for transitions between |0); and
|1);, and an equivalent expression for the transition between |0); and |2} is obtained by swapping 1™ and n{™.
In keeping with the aim to simplify the parameter space as much as possible, we further assume Q7 /v, = Q3/7,,
and rescale the time variable by Q? / v,- We focus our study on three generic cases: (i) R > R,, (ii) R ~ R.and
(iii) R < R,. Cases (i) and (iii) are examples of non-additive interactions, R = R,. Such interactions are of
interest in the theoretical study of complex and glassy dynamics in classical mixtures, but their experimental
realization remains challenging in those contexts, whereas they appear generically in Rydberg gases. We expect
that in case (i) the excitations of one component will be surrounded by excitations of the other component, in an
anticorrelated pattern, as in the upper panel of figure 1(c). By analogy, in case (iii), one expects the clustering of
excitations of a given component, as in the lower panel of figure 1(c).

This phenomenology is indeed observed using kinetic Monte-Carlo simulations in a 1D chain of van der
Waals-interacting atoms (o = 6). We focus on a mesoscopic system of size N = 20, as such sizes are accessible
by current experiments, and use periodic boundary conditions to prevent uncontrolled boundary effects. In
figure 2 we show representative trajectories for cases (i)—(iii) for fixed R = 2 and varying R, where an atom
appears in blue if it is in the excited state | 1), in red if it has been excited to |2), and in white if it is in the ground
state. Analogous results for four components are presented in appendix B. For R, = 1/2 (R > R,), the

3
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Figure 2. Representative trajectories for different inter-level interaction parameter values. Representative trajectories for R = 2 and
R.=1/2(a),R. = 2(b),and R, = 8(c, d). The appearance of an ‘intruding’ excitation has been magnified in (c). Blue corresponds to
[1), red to |2), and white to ground state atoms.

excitation pattern forms something that can be described as heterogeneous domains of alternating excitations of
one and the other component, with some defects (figure 2(a)). For R, = 8 (R < R.), where the proximity of
heterogeneous neighbors is penalized, large homogeneous domains (i.e. regions where there are only excitations
of a given component) are seen to exist throughout most of the non-equilibrium evolution of the system
(figures 2(c) and (d)). Whether one sees a homogeneous domain of one or the other component depends on the
small imbalances that may occur at the initial stages of the process. Indeed, in figure 2(c) at some point, the
appearance of ‘intruding’ excitations (one of them is magnified) leads to the replacement of a large component
|1) domain by a similar one of component |2). In other trajectories, like that shown in figure 2(d), domains of a
given component dominate throughout the non-equilibrium regime. As for the situation in which R, = 2

(R = R,, figure 2(b)), corresponding to additive interactions, excited atoms are as likely to be found close to
excitations of either component throughout the evolution of the system. Indeed, the components act as labels
that permit to distinguish different types of excitations, but they have no dynamical consequences. This is in
stark contrast to situations in which the interactions are non-additive, where (as shown above) the
configurations that emerge are highly dependent on the components of the excitations. As in mixtures of
classical particles, non-additivity brings richness into the dynamics.

With increasing time, the lattice fills with more and more excitations. Eventually these highly structured
configurations disappear and the system settles into the stationary state of the master equation, which is
proportional to the identity, p, = (p + 1)™N ®; It Accordingly, in the effective dynamics the average number
ofatoms in each level becomes N /(p + 1), as can be seen from equation (2). In figure 3(a) we show
(m@)) = 1A/N)Y, (nl(k) (1)), 1.e. the density of atoms in the excited state | 1), as a function of time. This
observable gives us some important information of the generic aspects of the classes of dynamics illustrated in
figure 2 for specific realizations. We again fix R = 2,andlookat R, = 1/2, 2 and 8. The excitation density for
the situations corresponding to the two extreme values of R. increases until it reaches a long plateau which has
been highlighted with vertical arrows in the figure. The origin of these plateaus will be clarified below. Much later
another increase leads the system towards the sationary state (see the black horizontal line). While the results for
(n{P(t)) are identical, single trajectories fluctuate strongly, a situation reminiscent of dynamic symmetry
breaking (see, e.g., [46, 47]).

To gain insight into the relaxation behavior reported in figure 3(a), and especially on the type of
configurations that occur at different stages of the dynamics, it is useful to complement the study of the time
evolution of the density of excitations with that of an observable that can help distinguish between different local
patterns of excitations. For this purpose, we focus on the density of excitation blocks, i.e. excited atoms whose
right neighbors are also excited. We consider separately homogeneous and heterogeneous blocks, which are

4
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Figure 3. Density of excitations and excitation blocks. (a) Density of component |1) atoms for R = 2and R, = 1/2, 2, 8. Arrows
indicate the times around which the density reaches a plateau (as explained in the text) for R, = 1/2 (red) and R, = 8 (blue). (b)
Density of homogeneous (continuous lines) and heterogeneous (dotted lines) excitation blocks (same color coding as in (a)). Black
horizontal lines indicate the stationary values. Averages based on 2000 trajectories.

made up of same-component or different-component excitations respectively. The former type is shown
enclosed in a continuous-line box and the latter in a dashed-line box in the inset of figure 3(b), where we show
the density of homogeneous (continuous line) and heterogeneous blocks (dotted line). The block density in the
stationary state is indicated by a black horizontal line. This is (n” n D) /N + (nf?n{*DY /N = 2/(p + 1)?
for homogeneous blocks, and the same value can be easily seen to apply to heterogenous blocks. For R, = 1/2
the density reaches the plateau in figure 3(a) at the time the concentration of heterogeneous blocks gets close to
the equilibrium value, and the final push into stationarity corresponds to an equivalent move on the part of the
concentration of homogeneous blocks. This corresponds to a rapidly achieved alternating pattern of excitations,
which persists for long times until it finally relaxes into the stationary state. For R, = 8, we see the opposite
behavior: the plateau is reached first when the homogeneous blocks attain the equilibrium value, and
stationarity is achieved after along wait when the heterogeneous blocks reach that value as well. The
interpretration is analogous to that of the R, = 1/2 case, but now the domains that appear at the time the
plateau is reached are homogeneous. In which case it takes shorter or longer for the homogeneous or the
heterogeneous blocks to reach the equilibrium value can of course be inferred from the rates in equation (3). The
case where R, = R = 2 unsurprisingly shows a simultaneous equilibration of both types of blocks, and
therefore stationarity is reached without an intermediate plateau.

These results suggest that the domain structure remains in place for very long times before reaching
stationarity. To clarify this we consider the order parameter

N

Pt = = Y 1P () — nP ()], @
N

for the study of homogeneous domains. Bimodal distributions of this parameter indicate very strong dominance
of one of the two components, while a narrow unimodal distribution that peaks at zero indicates the existence of
configurations where both components are strongly mixed. We further define a similar parameter that assigns
an alternating sign to consecutive excitations along the chain for the study of heterogeneous domains
P(t) = %Zke (=DM [nl(k) (t) — nz(k) (1)), where & is the positionally ordered set of the excitations in the chain,
and Ny is the position of site kin £ (i.e.,if € = {1, 4, 9, 16, ...}, Ny = 1, N, = 2,and so on).

The probability distribution of P_ across time for R = 2, R, = 1/2, 2 and 8 is shown in figures 4(a), (b) and
(c), respectively. For R, = 1/2 (figure 4(a)), P_(¢) has arelatively wide distribution that narrows down as the
system approaches stationarity, indicating the loss of order. The presence of defects makes the distribution
unimodal even for short times. For R, = 2 (figure 4(b)), P, () is narrowly distributed around zero, as the
occurrence of both components is equally likely in all realizations. This case can be analyzed with P_(t) as well,
yielding very similar results (not shown). A richer phenomenology occurs when R, > R (R, = 8, figure 4(c)),
with a clearly bimodal distribution throughout the non-equilibrium evolution of the system. Initially, two
branches are formed symmetrically around zero, separated by a region of very low probability of occurrence.
This corroborates the role of the initial seed in leading the system to domains of either component. The two
peaks of P, (t) separate more and more until they saturate. Later on, the domain structure starts crumbling upon
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Figure 4. Probability distribution of order parameters P, for different values of R... (a) Distribution of P_(t) forR = 2and R, = 1/2.
(b) and (c) Distribution of P.(f) for R = 2and R. = 2 (b) or R. = 8 (c). (d) Distributions shown in (c) at t = 102 (black), 10* (blue)
and 108 (red) (see vertical lines). Histograms contain 2000 trajectories.

the appearance of excitations of the non-dominant component. This is illustrated in figure 4(d), where the
curves corresponding the distributions shown in (c) at times ¢ = 102, 10* and 10® are shown.

The saturation value for R, > Ris|P.| 2~ 0.5, which corresponds to a metastable state, as we now explain. In
the two-component case, the right-hand side of equation (2) contains two terms for each site. Within a
homogeneous domain of, say, component [1), ' < T'(®), so for times shorter than 1/T'¥" transitions between
|0) and |1) dominate. The corresponding term reaches a ‘partial equilibrium’ when 0¥ uio® — 7% 11 is as likely
to create excitations as de-excitations, i.e. when there are as many atoms in the ground state as in state |1).
Indeed, this state, in which detailed balance is satisfied for one of the transitions between the ground state and an
excited state, would correspond to the stationary dynamics of a single-component Rydberg gas. In multi-
component systems, however, excitations of the non-dominant component have to appear eventually in order
for the system to reach the true stationary state, as shown in figures 4(c) and (d). A similar behavior is observed in
four-component systems (see appendix B). The reader should note that such metastable states may not be
achieved in experiments starting from an empty initial state if the times required to reach them exceed the
lifetimes of the atoms. Starting from densely populated initial states can be helpful in probing this metastability.

Conclusions

We have derived an effective theory for a multi-component Rydberg gas in the presence of noise. For non-
additive interactions, the emerging dynamics displays a domain structure that depends sensitively on the initial
excitations. For large inter-species interactions this leads to a metastable dynamics when partial equilibration is
reached for the dominant component, which corresponds to the stationary state of a single-component system
where only that Rydberg transition is driven. To our knowledge, this could be the first system that is
experimentally accessible in which non-additive interactions of the kind that are considered in classical mixtures
of particles for the study of metastable dynamics can be naturally implemented, and are indeed expected to occur
generically. Whether the phenomenology persists at the qualitative level when the dissipation is only moderately
strong or even weak compared to the driving, as has been recently shown to occur in the case of single-
component Rydberg gases [19], is an interesting question that remains to be studied, as is the general role of
quantum fluctuations [48]. The possibility that the (to some extent) tunable exchange interaction of Rydberg
gases [40] can open up new relaxation pathways in multi-component systems will be explored in the future.
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Appendix A. Derivation of the effective equations of motion

We consider a gas of N atoms in a lattice. The ground state |0) of each atom is resonantly coupled by laser fields to
the Rydbergstates |1), |2),...,|p) (with energies such that Ey < E; < --- < E,). The Master equation is then
givenby 0,p = Lop + L;p, where L contains the interaction Hamiltonian and the dissipator, and £, gives the
time evolution due to the driving. For the derivation below, where £; will be treated as a perturbation, this is
more convenient than the more physical decomposition into a coherent part and a dissipator that is used in the
main text. The Liouvillian superoperator £, is defined as

p N
Lop = —ilH p] + %Z(fl(k)pﬂ(k) L (n®, p})> ®)

s=1 k=1

where n® = |s)(s| and , is the dephasing rate of |s) w.r.t. |0). Atoms in the Rydberg states |s) and |s") at
positions ry and r,, interact through a power-law potential Vksf,; = C < / |ry — r,|* with exponent a.. For

simplicity we denote the intra-level interactions by V3, instead of V3;,.. As a result, the Hamiltonian H, can be
written as
5 k), (m) s (k) (m)
S m m
Ho= > > | Viun®ni™ + > vis,nnim . (6)
s=1lk<m s'zs

The superoperator L therefore consists of a Hamiltonian part and a dissipator whose individual terms
commute. Additionally, we have the driving term, which in the rotating-wave approximation becomes

Llp = —IZQ Z g?; : (7)
s=1 k=1

where 00 = [s)(0] + |0)(s|and €, is the Rabi frequency of the coupling between |s) and [0). Our aim is to
derive the effective dynamics in the limit of strong dissipation, €2, < ~,. We start by working out the effect of the

dissipator on the dynamics. Using the notation, EO =k 1[’75 ( ®pn® — {n(k), P} )], we write

ﬁofp — e—ngt[®e£{fdtp] eiHot, (8)

m

The first-order contribution of the action of e£6at = T + £ , 4+ 1/21 (L§ )? £* + O(#3) on the density
operator is

0 - %(%—1 + Wt ch()p,l) — —'yp t p(k)
,C](;,d pg‘) t = %Wp*l +. W)t pg;;)fl)p 0 T E’Yp 1 pg? o |, 9)
*) 1 *) .
- 5% t Py - EWp—l L Pocp—1) 0
where the dissipative evolution of site k has been made explicit using the basis states [0}, |1}, |2), .-, |p ) and

pgjz arethe pN=! x pN~Imatrices defined by p(r’n‘i = (n|p |m). By analogously deriving higher order terms, it
can be shown that the action of the dissipator e£o*p is

7
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pg‘; e*%(wgﬂﬂb)rp(k)p b e p(k)
=5 (1t HK) (k) Yt
eifor| ) eLbat € 2Oy Plo-1(p-1) e 2h- ‘P( 71)0 eiHot (10)
m=k : . . .
EEPYPING: 1, k k
e Z'thp( ) e 2’71; ltpf)()p 1) pE)O)

The off-diagonal entries of the density matrix are seen to decay exponentially, a fact that is not altered by the
action of the coherenct dynamics given by Hy, which is diagonal in the product basis formed by single particle
states [0)e,| 1)k, 12 ---» | p)k- Therefore, the evolution under £, becomes, at time scales much larger than the
inverse of the dephasing rates, a projector P on the diagonal of p in that same basis
Pp = lim e'p = diag(p), (11)
t—00

as happens in the case of just one Rydberglevel [ 1]. The removal of all coherences leads to a diagonal density
matrix, where each classically accessible configuration (e.g. [00100203 --- 1))is given a certain probability of
occurrence.

Using the projector operator P and its complement Q = 1 — P, we can formulate the effective evoluton
equation for the diagonal density matrix . = Pp describing the slow evolution. To second order in £;, the
general expression is given by

Oupt = PLipt + fom dtPL Qe ' QL. (12)

In this case PLjy = 0and Qe QL, P = e“o! £;P. We next calculate the integrand in equation (12),

PLielot Ly = — P(ZZQS/QS[ag’f;, eLot [gm)] u]])

ss’ km

- _ ZZQ? P(agﬁ)e‘:“t(agﬁ)u) O.(k)eﬂot(ﬂ O.(k)) _ eL"t(O'(k)/J,)Ug? + eﬁf"(,u U(k))a(k))
sk

(13)

We have used the fact that e does not shift matrix elements, and that the action of 0 = [s)(0] + [0)(s|
followed by that of U(’”) = |s"),{0] + |0),(s’| can only produce non-zero diagonal elementsif s’ = sandm = k.

In the followmg, we explicitly work out the terms in equation (13). We focus on the contribution
corresponding to level |1) for concreteness

0-- 0 0 0 - 0 0
oWeli 0l = oPet|y p<k> = ol ™o o e[
0 - o™ ¢ 0 .- e amtp® 0
Pii T (14)
e e el [t v oo 0
0 e 271 e UZ [Vkm "’)+Z Vh ('")]pgg
—Lye,it> [Vin ”’+ Vigantd™ | ()
U{I;)e/"‘”t(,u U%’;{)) _ |- eamte o [ 2 > ]poo 0 , (15)
0 e*f"/l 7itzm[Vtmnl('”)+Zs Vi, ns("')]p(k)
11
LO;(U(k)M)O,(k) N -3t e 11‘2 [Vkm m)+z Visn (m)]p(ojg 0 , (16)
0 e g [t 5,
11
et (i o®yo® — | - ettt [Vinn™+3, Vinn™ | Pﬁ) 0 . a7
0 e tnteit X, [ Vi + X, V] )

We will use V¥ = Yom [Vkm ni™ + S SVkm (m)] as shorthand to refer to the increment in the interaction

energy that one has to pay for the excitation of atom k to level |s). In the expressions above V¥ appears in the
oscillatory part of the diagonal elements of the matrix.

8
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The term corresponding tos = 1in equation (13) is therefore

_QIZ .o Qe it cos (V{(t)[pili) — pgg] 0 > (18)
0 2e i cos (Vi [pl) — ot

and the contributions due to the other levels take an analogous form. Thus, equation (12) can be rewritten as

p 00 p 492
o= -0 [ dr Y2 e P cosWINIT O - oWpod) = YT o000 - 100y,
s=1 0 k s=1k 1+ (ZVS/%)

19)

where the projection operator Z® = n® 4 |0) (0| cancels all the elements in z that do not correspond to the
ground state or |s) at site k. The effective dynamics is therefore given by

L 402
o =3 ST oot~ T, @
s=1 /s k
with rates for a transition |0) — |s) or|s) — |0)

e — ! . (1)
2

s 2
1+ l—z[v,imn§’”) + Zv,j;;ns(,"”]]

s m s'=s

To make explicit the power-law interactions, it is useful to refer to the atomic spatial arrangement in terms of
reduced position vectors £, = ry/a, where a s the lattice constant. We define an intra-level interaction
parameter R, = a~'[2C; /’ys]l/ @ (for interactions between atoms in the same level,

’ U
Vi, = Cin®nl™ /a0, — £,|%), and an inter-level interaction parameter RS = a~![2C* / 75]1/ “

(for interactions between atoms in different levels, V,f,i; = C;S’ns(k)ns(,m) / a®|f, — £,]%). The (inverse) rates

can then be written as
’ 2
L Z(RS)Q n™ 4+ 3 R (22)
e n B — B

In some cases, the interaction exponent «v could be different depending on the atomic levels involved. This more
general case can be easily worked out from equation (21), but here we will assume that «v is the same for all level
pairs.

Appendix B. Phenomenology of a four-component dissipative Rydberg gas

While the derivation of the effective equations of motion is valid for any number of species, in the numerical
results reported in the main text we focus on the two-component case, p = 2. However, both the main
observations on the phenomenology and the theoretical arguments given there can be extended without great
difficulty to the p > 2 case. In this section we briefly report some results for p = 4. For the sake of simplicity, we
again use a somewhat idealized parameter choice according to which all the intra-level interaction parameters,
which we collectively denote as R, are equal to one another, while all the inter-level interaction parameters,
denoted as R, are also equal among themselves. We focus on the R, > R case, where homogeneous domains
emerge, as it gives the richest phenomenology. More specifically, we consider R = 2 and R, = 8, which
coincides with the parameter choice used in the main text.

In figure B1(a), we see one representative trajectory of a system of N = 20 atoms with van der Waals
interactions. The color coding is such that red corresponds to state |1), green to |2), cyan to |3), magenta to |4)
and white to ground state atoms. While there are some initial excitations to | 1), they finally de-excite and are
replaced by excitations to |4), which by then has become the dominant component. The large homogeneous
|4)-domain that emerges is later replaced by a |3)-domain. Atlonger times, two domains, corresponding to | 1)
and |4) coexist. Eventually, when stationarity is approached, the system undergoes a strong mixing of all the
components.

To quantify the emerging dynamical order we focus on a complex order parameter that is an extension of the
real order parameter P, that was proposed in the main text for p = 2 (see equation (4)). Itis defined as follows

N 4
P = 23 S enpin (2= o, 23)

k=1s=1
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Figure B1. Individual trajectory and probability distribution of the order parameter P, at t = 10> forap = 4 system with R = 2and
R, = 8.(a) Representative trajectory. The color coding is such that red corresponds to state |1), green to |2), cyan to |3), magenta to |4)
and white to ground state atoms. (b) Probability distribution of P, (¢) at t = 102. The histogram is based on 1000 kinetic Monte
Carlo realizations.

This order parameter, which has been inspired by the theory of the Potts model [49], can be easily extended to
any number of components p. In figure B1(b) we show P, (¢) at t = 102, which corresponds to the time at
which most of the trajectories inspected still show one domain that spans the whole chain. The existence of as
many maxima as there are excited levels, all of them quite distant from the origin, indeed indicates that the
formation of large domains of the kind seen in figures 2(c) and (d) of the main text for p = 2 occurs generically
in systems with a larger number of components as well. As in the two-component case (main text, figure 4(d)),
the four peaks reach the saturation value of | P, | ~ 0.5 at later times, and eventually subside into a unimodal
distribution centered around the origin when the system approaches the stationary state.
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