129 research outputs found

    Оптимизация затрат нефтегазовой отрасли на примере предприятия АО «Томскнефть» ВНК

    Get PDF
    В работе были рассмотрены следующие вопросы: сущность затрат, формирование себестоимости продукции, методы учета и калькуляция затрат, особенности учета затрат в нефтегазовой отрасли, пути снижения затрат., краткая характеристика исследуемого объекта, проведен анализ себестоимости продукции.V rabote byli rassmotreny sleduyushchiye voprosy: sushchnost' zatrat, formirovaniye sebestoimosti produktsii, metody ucheta i kal'kulyatsii zatrat, osobennosti ucheta zatrat v neftegazovoy otrasli, puti snizheniya zatrat., Kratkaya kharakteristika issleduyemogo ob"yekta, proveden analiz sebestoimosti produktsii

    Apoptosis-Inducing Factor Regulates Skeletal Muscle Progenitor Cell Number and Muscle Phenotype

    Get PDF
    Apoptosis Inducing Factor (AIF) is a highly conserved, ubiquitous flavoprotein localized in the mitochondrial intermembrane space. In vivo, AIF provides protection against neuronal and cardiomyocyte apoptosis induced by oxidative stress. Conversely in vitro, AIF has been demonstrated to have a pro-apoptotic role upon induction of the mitochondrial death pathway, once AIF translocates to the nucleus where it facilitates chromatin condensation and large scale DNA fragmentation. Given that the aif hypomorphic harlequin (Hq) mutant mouse model displays severe sarcopenia, we examined skeletal muscle from the aif hypomorphic mice in more detail. Adult AIF-deficient skeletal myofibers display oxidative stress and a severe form of atrophy, associated with a loss of myonuclei and a fast to slow fiber type switch, both in “slow” muscles such as soleus, as well as in “fast” muscles such as extensor digitorum longus, most likely resulting from an increase of MEF2 activity. This fiber type switch was conserved in regenerated soleus and EDL muscles of Hq mice subjected to cardiotoxin injection. In addition, muscle regeneration in soleus and EDL muscles of Hq mice was severely delayed. Freshly cultured myofibers, soleus and EDL muscle sections from Hq mice displayed a decreased satellite cell pool, which could be rescued by pretreating aif hypomorphic mice with the manganese-salen free radical scavenger EUK-8. Satellite cell activation seems to be abnormally long in Hq primary culture compared to controls. However, AIF deficiency did not affect myoblast cell proliferation and differentiation. Thus, AIF protects skeletal muscles against oxidative stress-induced damage probably by protecting satellite cells against oxidative stress and maintaining skeletal muscle stem cell number and activation

    Разработка и исследование асинхронного электропривода с наблюдателем состояния

    Get PDF
    Выпускная квалификационная работа 109 с., 35 рис., 18 табл., 47 источников, 5 прил. Объектом исследования является дискретная математическая модель наблюдателя состояния полного порядка асинхронного двигателя. Цель работы – Разработка и исследование асинхронного электропривода с наблюдателем состояния В процессе исследования проводилось имитационное моделирование разработанной дискретной математической модели асинхронного двигателя и разработанной дискретной математической модели наблюдателя состояния полного порядкаFinal qualifying work 109 p., 35 fig., 18 tab., 47 sources, 5 adj. The object of research is a discrete mathematical model of the observer status of full order of the induction motor. Objective - Development and research of the asynchronous electric drive with observer status The study was conducted simulations developed discrete mathematical model of the induction motor and the developed mathematical model of discrete observer of full order stat

    A Phase I Trial of the Dual MET Kinase/OCT-2 Inhibitor OMO-1 in Metastatic Solid Malignancies Including MET Exon 14 Mutated Lung Cancer

    Get PDF
    Introduction: Targeted therapy in non-small cell lung cancer (NSCLC) patients with mesenchymal epithelial transition (MET) exon 14 skipping mutations (METex14) and MET amplifications has improved patients' outcomes. The development of more potent MET kinase inhibitors could further benefit these patients. The aim of this trial is to determine the safety and recommended phase 2 dose (RP2D) of OMO-1 (an oral dual MET kinase/OCT-2 inhibitor) and to assess preliminary clinical efficacy in METex14-positive NSCLC and other MET-positive solid tumors. Materials and Methods: This was a first-in-patient, open-label, multicenter study of OMO-1 in patients with locally advanced or metastatic solid malignancies. A standard 3 + 3 dose escalation design was utilized starting at a dose level of 100 mg BID continuously. Preliminary efficacy was investigated in patients with METex14-positive NSCLC, and MET amplified NSCLC and other solid tumors (MET basket). Results: In the dose-escalation part, 24 patients were included in 5 dose levels ranging from 100 mg twice daily (BID) to 400 mg BID. Most common adverse events (≥ 20%) were nausea, fatigue, vomiting, increased blood creatinine, and headache. The RP2D was determined at 250 mg BID. In the expansion cohorts, 15 patients were included (10 in METex14-positive NSCLC cohort and 5 in MET basket cohort) and received either 200 or 250 mg BID. Eight out of the 10 patients with METex14 positive NSCLC had stable disease as the best response. Conclusion: OMO-1 was tolerated at the dose of 250 mg BID and shows initial signs of MET inhibition and anti-tumor activity in METex14 mutated NSCLC patients.</p

    A Phase I Trial of the Dual MET Kinase/OCT-2 Inhibitor OMO-1 in Metastatic Solid Malignancies Including MET Exon 14 Mutated Lung Cancer

    Get PDF
    Introduction: Targeted therapy in non-small cell lung cancer (NSCLC) patients with mesenchymal epithelial transition (MET) exon 14 skipping mutations (METex14) and MET amplifications has improved patients’ outcomes. The development of more potent MET kinase inhibitors could further benefit these patients. The aim of this trial is to determine the safety and recommended phase 2 dose (RP2D) of OMO-1 (an oral dual MET kinase/OCT-2 inhibitor) and to assess preliminary clinical efficacy in METex14-positive NSCLC and other MET-positive solid tumors.// Materials and Methods: This was a first-in-patient, open-label, multicenter study of OMO-1 in patients with locally advanced or metastatic solid malignancies. A standard 3 + 3 dose escalation design was utilized starting at a dose level of 100 mg BID continuously. Preliminary efficacy was investigated in patients with METex14-positive NSCLC, and MET amplified NSCLC and other solid tumors (MET basket).// Results: In the dose-escalation part, 24 patients were included in 5 dose levels ranging from 100 mg twice daily (BID) to 400 mg BID. Most common adverse events (≥ 20%) were nausea, fatigue, vomiting, increased blood creatinine, and headache. The RP2D was determined at 250 mg BID. In the expansion cohorts, 15 patients were included (10 in METex14-positive NSCLC cohort and 5 in MET basket cohort) and received either 200 or 250 mg BID. Eight out of the 10 patients with METex14 positive NSCLC had stable disease as the best response.// Conclusion: OMO-1 was tolerated at the dose of 250 mg BID and shows initial signs of MET inhibition and anti-tumor activity in METex14 mutated NSCLC patients

    Hypoxia induces dilated cardiomyopathy in the chick embryo: mechanism; intervention; and long-term consequences.

    Get PDF
    Background Intrauterine growth restriction is associated with an increased future risk for developing cardiovascular diseases. Hypoxia in utero is a common clinical cause of fetal growth restriction. We have previously shown that chronic hypoxia alters cardiovascular development in chick embryos. The aim of this study was to further characterize cardiac disease in hypoxic chick embryos. Methods Chick embryos were exposed to hypoxia and cardiac structure was examined by histological methods one day prior to hatching (E20) and at adulthood. Cardiac function was assessed in vivo by echocardiography and ex vivo by contractility measurements in isolated heart muscle bundles and isolated cardiomyocytes. Chick embryos were exposed to vascular endothelial growth factor (VEGF) and its scavenger soluble VEGF receptor-1 (sFlt-1) to investigate the potential role of this hypoxia-regulated cytokine. Principal Findings Growth restricted hypoxic chick embryos showed cardiomyopathy as evidenced by left ventricular (LV) dilatation, reduced ventricular wall mass and increased apoptosis. Hypoxic hearts displayed pump dysfunction with decreased LV ejection fractions, accompanied by signs of diastolic dysfunction. Cardiomyopathy caused by hypoxia persisted into adulthood. Hypoxic embryonic hearts showed increases in VEGF expression. Systemic administration of rhVEGF165 to normoxic chick embryos resulted in LV dilatation and a dose-dependent loss of LV wall mass. Lowering VEGF levels in hypoxic embryonic chick hearts by systemic administration of sFlt-1 yielded an almost complete normalization of the phenotype. Conclusions/Significance Our data show that hypoxia causes a decreased cardiac performance and cardiomyopathy in chick embryos, involving a significant VEGF-mediated component. This cardiomyopathy persists into adulthood

    uPA deficiency exacerbates muscular dystrophy in MDX mice

    Get PDF
    Duchenne muscular dystrophy (DMD) is a fatal and incurable muscle degenerative disorder. We identify a function of the protease urokinase plasminogen activator (uPA) in mdx mice, a mouse model of DMD. The expression of uPA is induced in mdx dystrophic muscle, and the genetic loss of uPA in mdx mice exacerbated muscle dystrophy and reduced muscular function. Bone marrow (BM) transplantation experiments revealed a critical function for BM-derived uPA in mdx muscle repair via three mechanisms: (1) by promoting the infiltration of BM-derived inflammatory cells; (2) by preventing the excessive deposition of fibrin; and (3) by promoting myoblast migration. Interestingly, genetic loss of the uPA receptor in mdx mice did not exacerbate muscular dystrophy in mdx mice, suggesting that uPA exerts its effects independently of its receptor. These findings underscore the importance of uPA in muscular dystrophy

    Hypoxia induces dilated cardiomyopathy in the chick embryo: mechanism, intervention, and long-term consequences

    Get PDF
    Background: Intrauterine growth restriction is associated with an increased future risk for developing cardiovascular diseases. Hypoxia in utero is a common clinical cause of fetal growth restriction. We have previously shown that chronic hypoxia alters cardiovascular development in chick embryos. The aim of this study was to further characterize cardiac disease in hypoxic chick embryos. Methods: Chick embryos were exposed to hypoxia and cardiac structure was examined by histological methods one day prior to hatching (E20) and at adulthood. Cardiac function was assessed in vivo by echocardiography and ex vivo by contractility measurements in isolated heart muscle bundles and isolated cardiomyocytes. Chick embryos were exposed to vascular endothelial growth factor (VEGF) and its scavenger soluble VEGF receptor-1 (sFlt-1) to investigate the potential role of this hypoxia-regulated cytokine. Principal Findings: Growth restricted hypoxic chick embryos showed cardiomyopathy as evidenced by left ventricular (LV) dilatation, reduced ventricular wall mass and increased apoptosis. Hypoxic hearts displayed pump dysfunction with decreased LV ejection fractions, accompanied by signs of diastolic dysfunction. Cardiomyopathy caused by hypoxia persisted into adulthood. Hypoxic embryonic hearts showed increases in VEGF expression. Systemic administration of rhVEGF165 to normoxic chick embryos resulted in LV dilatation and a dose-dependent loss of LV wall mass. Lowering VEGF levels in hypoxic embryonic chick hearts by systemic administration of sFlt-1 yielded an almost complete normalization of the phenotype. Conclusions/Significance: Our data show that hypoxia causes a decreased cardiac performance and cardiomyopathy in chick embryos, involving a significant VEGF-mediated component. This cardiomyopathy persists into adulthood

    MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors

    Get PDF
    BACKGROUND MicroRNA (miRNA) expression profiles have been described in pancreatic ductal adenocarcinoma (PDAC), but these have not been compared with pre-malignant pancreatic tumors. We wished to compare the miRNA expression signatures in pancreatic benign cystic tumors (BCT) of low and high malignant potential with PDAC, in order to identify miRNAs deregulated during PDAC development. The mechanistic consequences of miRNA dysregulation were further evaluated. METHODS Tissue samples were obtained at a tertiary pancreatic unit from individuals with BCT and PDAC. MiRNA profiling was performed using a custom microarray and results were validated using RT-qPCR prior to evaluation of miRNA targets. RESULTS Widespread miRNA down-regulation was observed in PDAC compared to low malignant potential BCT. We show that amongst those miRNAs down-regulated, miR-16, miR-126 and let-7d regulate known PDAC oncogenes (targeting BCL2, CRK and KRAS respectively). Notably, miR-126 also directly targets the KRAS transcript at a "seedless" binding site within its 3'UTR. In clinical specimens, miR-126 was strongly down-regulated in PDAC tissues, with an associated elevation in KRAS and CRK proteins. Furthermore, miR-21, a known oncogenic miRNA in pancreatic and other cancers, was not elevated in PDAC compared to serous microcystic adenoma (SMCA), but in both groups it was up-regulated compared to normal pancreas, implicating early up-regulation during malignant change. CONCLUSIONS Expression profiling revealed 21 miRNAs down-regulated in PDAC compared to SMCA, the most benign lesion that rarely progresses to invasive carcinoma. It appears that miR-21 up-regulation is an early event in the transformation from normal pancreatic tissue. MiRNA expression has the potential to distinguish PDAC from normal pancreas and BCT. Mechanistically the down-regulation of miR-16, miR-126 and let-7d promotes PDAC transformation by post-transcriptional up-regulation of crucial PDAC oncogenes. We show that miR-126 is able to directly target KRAS; re-expression has the potential as a therapeutic strategy against PDAC and other KRAS-driven cancers
    corecore