200 research outputs found

    Dynamic whole-body motion generation under rigid contacts and other unilateral constraints

    Get PDF
    The most widely used technique for generating wholebody motions on a humanoid robot accounting for various tasks and constraints is inverse kinematics. Based on the task-function approach, this class of methods enables the coordination of robot movements to execute several tasks in parallel and account for the sensor feedback in real time, thanks to the low computation cost. To some extent, it also enables us to deal with some of the robot constraints (e.g., joint limits or visibility) and manage the quasi-static balance of the robot. In order to fully use the whole range of possible motions, this paper proposes extending the task-function approach to handle the full dynamics of the robot multibody along with any constraint written as equality or inequality of the state and control variables. The definition of multiple objectives is made possible by ordering them inside a strict hierarchy. Several models of contact with the environment can be implemented in the framework. We propose a reduced formulation of the multiple rigid planar contact that keeps a low computation cost. The efficiency of this approach is illustrated by presenting several multicontact dynamic motions in simulation and on the real HRP-2 robot

    Visual servoing sequencing able to avoid obstacles.

    Get PDF
    International audienceClassical visual servoing approaches tend to constrain all degrees of freedom (DOF) of the robot during the execution of a task. In this article a new approach is proposed. The key idea is to control the robot with a very under-constrained task when it is far from the desired position, and to incrementally constrain the global task by adding further tasks as the robot moves closer to the goal. As long as they are sufficient, the remaining DOF are used to avoid undesirable configurations, such as joint limits. Closer from the goal, when not enough DOF remain available for avoidance, an execution controller selects a task to be temporary removed from the applied tasks. The released DOF can then be used for the joint limits avoidance. A complete solution to implement this general idea is proposed. Experiments that prove the validity of the approach are also provided

    Generation of dynamic motion for anthropomorphic systems under prioritized equality and inequality constraints

    Get PDF
    In this paper, we propose a solution to compute full-dynamic motions for a humanoid robot, accounting for various kinds of constraints such as dynamic balance or joint limits. As a first step, we propose a unification of task-based control schemes, in inverse kinematics or inverse dynamics. Based on this unification, we generalize the cascade of quadratic programs that were developed for inverse kinematics only. Then, we apply the solution to generate, in simulation, wholebody motions for a humanoid robot in unilateral contact with the ground, while ensuring the dynamic balance on a non horizontal surface

    RT-SLAM: A Generic and Real-Time Visual SLAM Implementation

    Full text link
    This article presents a new open-source C++ implementation to solve the SLAM problem, which is focused on genericity, versatility and high execution speed. It is based on an original object oriented architecture, that allows the combination of numerous sensors and landmark types, and the integration of various approaches proposed in the literature. The system capacities are illustrated by the presentation of an inertial/vision SLAM approach, for which several improvements over existing methods have been introduced, and that copes with very high dynamic motions. Results with a hand-held camera are presented.Comment: 10 page

    Learning How to Walk: Warm-starting Optimal Control Solver with Memory of Motion

    Get PDF
    In this paper, we propose a framework to build a memory of motion for warm-starting an optimal control solver for the locomotion task of a humanoid robot. We use HPP Loco3D, a versatile locomotion planner, to generate offline a set of dynamically consistent whole-body trajectory to be stored as the memory of motion. The learning problem is formulated as a regression problem to predict a single-step motion given the desired contact locations, which is used as a building block for producing multi-step motions. The predicted motion is then used as a warm-start for the fast optimal control solver Crocoddyl. We have shown that the approach manages to reduce the required number of iterations to reach the convergence from ~9.5 to only ~3.0 iterations for the single-step motion and from ~6.2 to ~4.5 iterations for the multi-step motion, while maintaining the solution's quality

    A Qualitative visual servoing: Application to the visibility constraint

    Get PDF
    International audienceThis paper describes an original control law called qualitative servoing. The particularity of this method is that no specific desired value is specified for the visual features involved in the control scheme. Indeed, visual features are only constrained to belong to a confident interval, which gives more flexibility to the system. While this formalism can be used for several types of visual features, it is used in this paper for improving the on-line control of the visibility of a target. The principle is to make a compromise between the classical positioning task and the visibility constraint. Experimental results obtained with a six degrees of freedom robot arm are presented, demonstrating the performance of the proposed method

    Proximal and Sparse Resolution of Constrained Dynamic Equations

    Get PDF
    International audienceControl of robots with kinematic constraints like loop-closure constraints or interactions with the environment requires solving the underlying constrained dynamics equations of motion. Several approaches have been proposed so far in the literature to solve these constrained optimization problems, for instance by either taking advantage in part of the sparsity of the kinematic tree or by considering an explicit formulation of the constraints in the problem resolution. Yet, not all the constraints allow an explicit formulation and in general, approaches of the state of the art suffer from singularity issues, especially in the context of redundant or singular constraints. In this paper, we propose a unified approach to solve forward dynamics equations involving constraints in an efficient, generic and robust manner. To this aim, we first (i) propose a proximal formulation of the constrained dynamics which converges to an optimal solution in the least-square sense even in the presence of singularities. Based on this proximal formulation, we introduce (ii) a sparse Cholesky factorization of the underlying Karush-Kuhn-Tucker matrix related to the constrained dynamics, which exploits at best the sparsity of the kinematic structure of the robot. We also show (iii) that it is possible to extract from this factorization the Cholesky decomposition associated to the so-called Operational Space Inertia Matrix, inherent to task-based control frameworks or physic simulations. These new formulation and factorization, implemented within the Pinocchio library, are benchmark on various robotic platforms, ranging from classic robotic arms or quadrupeds to humanoid robots with closed kinematic chains, and show how they significantly outperform alternative solutions of the state of the art by a factor 2 or more

    SL1M: Sparse L1-norm Minimization for contact planning on uneven terrain

    Get PDF
    International audienceOne of the main challenges of planning legged locomotion in complex environments is the combinatorial contact selection problem. Recent contributions propose to use integer variables to represent which contact surface is selected, and then to rely on modern mixed-integer (MI) optimization solvers to handle this combinatorial issue. To reduce the computational cost of MI, we exploit the sparsity properties of L1 norm minimization techniques to relax the contact planning problem into a feasibility linear program. Our approach accounts for kinematic reachability of the center of mass (COM) and of the contact effectors. We ensure the existence of a quasi-static COM trajectory by restricting our plan to quasi-flat contacts. For planning 10 steps with less than 10 potential contact surfaces for each phase, our approach is 50 to 100 times faster that its MI counterpart, which suggests potential applications for online contact re-planning. The method is demonstrated in simulation with the humanoid robots HRP-2 and Talos over various scenarios

    Fast foot prints re-planning and motion generation during walking in physical human-humanoid interaction

    Get PDF
    Abstract-In this paper a system allowing real-time interaction between a human and a humanoid robot while walking is presented. The aim of this work is to integrate humanoid robots into collaborative working environment. Co-located realization of a task is one instance of such collaboration. To achieve such task whole-body motion generation while keeping balance is mandatory. This is obtained using a real-time pattern generator allowing on-line foot-print modification integrated in a stack of controllers. Several experiments of direct interaction between a human and a HRP-2 humanoid robot illustrates the results

    Optimization-Based Control for Dynamic Legged Robots

    Full text link
    In a world designed for legs, quadrupeds, bipeds, and humanoids have the opportunity to impact emerging robotics applications from logistics, to agriculture, to home assistance. The goal of this survey is to cover the recent progress toward these applications that has been driven by model-based optimization for the real-time generation and control of movement. The majority of the research community has converged on the idea of generating locomotion control laws by solving an optimal control problem (OCP) in either a model-based or data-driven manner. However, solving the most general of these problems online remains intractable due to complexities from intermittent unidirectional contacts with the environment, and from the many degrees of freedom of legged robots. This survey covers methods that have been pursued to make these OCPs computationally tractable, with specific focus on how environmental contacts are treated, how the model can be simplified, and how these choices affect the numerical solution methods employed. The survey focuses on model-based optimization, covering its recent use in a stand alone fashion, and suggesting avenues for combination with learning-based formulations to further accelerate progress in this growing field.Comment: submitted for initial review; comments welcom
    • 

    corecore