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Dynamic Whole-Body Motion Generation Under

Rigid Contacts and Other Unilateral Constraints
Layale Saab, Oscar E. Ramos, François Keith, Nicolas Mansard, Philippe Souères, and Jean-Yves Fourquet

Abstract—Themostwidely used technique for generatingwhole-
body motions on a humanoid robot accounting for various tasks
and constraints is inverse kinematics. Based on the task-function
approach, this class of methods enables the coordination of robot
movements to execute several tasks in parallel and account for the
sensor feedback in real time, thanks to the low computation cost.
To some extent, it also enables us to deal with some of the robot con-
straints (e.g., joint limits or visibility) and manage the quasi-static
balance of the robot. In order to fully use thewhole range of possible
motions, this paper proposes extending the task-function approach
to handle the full dynamics of the robot multibody along with any
constraint written as equality or inequality of the state and control
variables. The definition of multiple objectives is made possible by
ordering them inside a strict hierarchy. Several models of contact
with the environment can be implemented in the framework. We
propose a reduced formulation of the multiple rigid planar contact
that keeps a low computation cost. The efficiency of this approach
is illustrated by presenting several multicontact dynamic motions
in simulation and on the real HRP-2 robot.

Index Terms—Contact modeling, dynamics, force control,
humanoid robotics, redundant robots.

I. INTRODUCTION

T
HE generation of motion for humanoid robots is a chal-

lenging problem, due to the complexity of their tree-like

structure and the instability of their bipedal posture [3]. Typi-

cal examples are shown in Fig. 1, with the HRP-2 robot using

multiple non-coplanar contacts to perform a dynamic motion.

These robots own a large number of degrees of freedom (DOFs),

typically more than 30. In return, they are subject to various sets
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Fig. 1. Dynamic multicontact motion with the HRP-2 model.

of constraints (balance, contact, actuator limits), which reduce

the space of possible motions. These constraints can typically

be formulated as equalities (e.g., zero velocity at rigid-contact

points [4]), and inequalities (e.g., joint limits [5], obstacles [6],

joint velocity and torque within given bounds). Moreover, they

are of relative importance (e.g., balance has to be considered

more important than visibility [7]). In total, the motion has to be

designed in a set that lives in the high-dimensional configuration

space but is implicitly limited to a much smaller submanifold

by the set of constraints. This makes the classical sampling

methods [8], [9] more difficult to use than for a classical ma-

nipulator. The motion manifold cannot be sampled directly but

by projection [10]. The connection process in high-dimension is

costly [11] and and often fails due to the number of constraints.

Rather than designing the motion at the whole-body level

(configuration space), the task function approach [12], [13] pro-

poses designing the motion in a space dedicated to the task to

be performed. It is then easier to design the reference motion

in the task space, and transcripting this reference from the task

space to the whole-body level is only a numerical problem. This

approach is versatile, since the same task is generally transpos-

able from one robot or situation to another. It also eases the use

of sensory feedback, since the sensory space is often a good

task-space candidate [14], [15].

A task is a basic brick of motion, which can be combined se-

quentially [16] or simultaneously to a complex motion. Simul-

taneous execution can be achieved in two ways: by weighting,

or by imposing a strict hierarchy. Coming from numerical op-

timization [17], this second solution was introduced in robotics

by [18] and formalized for any number of tasks in [19], [20].

This approach is well fitted to cope with equality constraints.

However, inequality constraints cannot be taken into account

explicitly. Therefore, approximate solutions, such as potential

field approaches [7], [22] or damping functions [5], [23] have

been proposed to consider inequalities.

The transcription of the motion reference from the task space

to the whole-body control is naturally written as a quadratic



program (QP) [24]. A QP is composed of two layers, namely

the constraint and the cost. It can be seen as a hierarchy of

two levels, the constraint having priority over the cost. If only

equality constraints are considered, the QP resolution corre-

sponds to the inversion schemes [20], in the particular case of

two levels. Inequalities can also be taken into account directly,

as constraints, or in the cost function [25]. In [26], a method to

extend the QP formulation to any number of priority levels is

given. The solution of such a hierarchical problem is computed

by solving a cascade of QP (or hierarchical QP). In [27], a dedi-

cated solver has been proposed to obtain the solution in one step

inside a cascade, which reduces the cost.

All these works only consider the kinematics of the robot. On

a humanoid robot, many constraints arise from the dynamics of

the multibody system. The formulation by task can be extended

to compute the torque at thewhole-body level from the reference

motion expressed in the dedicated task space, which is also

called operational space [28]. For a humanoid in contact, the

motion is constrained to the submanifold of configurations that

respects the contact model [29], as illustrated in Fig. 1. A review

of the work in modeling and control of the dynamics of a set of

bodies in contact is proposed in [30] and [31]. The connection

with inverse dynamics has been done in [32] and [33]. Using

these approaches, it is possible to take into account a hierarchy

of tasks and constraints (or stack of tasks [34]), all written as

equalities [35], [36]. In [37], a first solution to handle inequalities

in the stack of tasks (SOT) was proposed, but cannot set any

inequality constraint on the contact forces. In [38] and [39],

the inverse-dynamics problem has been written as a QP, where

the unilateral contact constraints, along with classical unilateral

constraints (joint limits, etc.) are explicitly considered. In that

case, several tasks can be composed by setting relative weights,

but a hierarchy of tasks is not possible.

In this paper, we propose a generic solution for taking into

account equalities and inequalities in a strict hierarchy to gener-

ate a dynamic motion. This solution is based on the similarities

between inverse kinematics and inverse dynamics. In Section II,

the inverse-kinematics scheme is recalled, written into a gen-

eral form; the possibility of taking into account inequalities

is then introduced using the solver [26], [27]. Then, putting

the operational-space inverse dynamics under the same generic

form, by Section III uses the same hierarchical solver to take

into account both dynamics and inequalities. This first solution

deals with the robot in free space. In Section IV, contacts are

introduced in the model and used in the resolution scheme. The

contact model is generic and can be adapted to various situ-

ations (rigid contact, friction cone [40], elastic contact [41]).

A solution is proposed in Section V for implementing a re-

duced form of multiple plane/plane slidingless rigid contacts.

In Section VI, the connection is made with the zero-moment

point (ZMP) contact criterion [42] classically used in humanoid

robotics [43]. The generation is close to the real time (around

20 ms per control cycle on a typical 30-DOF robot). Some ex-

amples of complex motions involving noncoplanar contacts and

their execution on the real robot are presented in Section VII.

Section VIII concludes this paper.

II. INVERSE KINEMATICS

A. Task-Function Approach

The task-function approach [13], or operational-space ap-

proach [28], [44], provides a mathematical framework for de-

scribing tasks in terms of specific output functions. The task

function is a function from the configuration space to an arbi-

trary task space, which is chosen to ease the observation and the

control of the motion with respect to the task to perform.

A task is defined by a triplet (e, ė∗, Q), where e is the task

function that maps the configuration space to the task space and

ė∗ is the reference behavior expressed in the tangent space to the
task space at e. Q is the differential mapping between the task

space and the control space of the robot that verifies the relation

ė + µ = Qu (1)

where u is the control in the configuration space and µ is the

drift of the task. To compute a specific robot control u∗ that
performs the reference ė∗, any numerical inverse of Q can be

used. The generic expression of the control law is then

u∗ = Q# (ė∗ + µ) + Pu2 . (2)

In this expression, the first part performs the task, and the sec-

ond part, modulated by the secondary control input u2 , ex-

presses the redundancy of the task [18]. In the first term, Q#

is any reflexive generalized inverse of Q, often chosen to be

the (Moore–Penrose) pseudoinverse Q+ [45] or a weighted in-

verse Q#W [46] (see Appendix A). In the second term of (2),

P = I − Q#Q is the projector onto the null space of Q corre-

sponding to Q# .

B. Hierarchy of Tasks

The projector P is intrinsically related to the redundancy of

the robotwith respect to the task e. A secondary task (e2 , ė
∗
2 , Q2)

can be executed using u2 as a new control input. Introducing (2)

in ė2 + µ2 = Q2u gives

ė2 + µ̃2 = Q̃2u2 (3)

with µ̃2 = µ2 − Q2Q
# (ė∗ + µ) and Q̃2 = Q2P. This last equa-

tion fits the template (1), and can be solved using the generic

expression (2) [20]

u∗
2 = Q̃2

#
(ė∗ + µ̃2) + P2u3 (4)

where P2 enables the propagation of the redundancy to a third

task using the input u3 . By recurrence, this generic scheme can

be extended to any arbitrary hierarchy of tasks.

C. Inverse Kinematics Formulation

In the inverse-kinematics problem, the control input u is sim-

ply the robot joint velocity q̇. The differential map Q between

the task and the control is the task Jacobian J. In that case, the

drift µ = ∂e
∂ t

is often null, and (1) is written as

ė = Jq̇. (5)



The simplest and most-often used solution is to choose Q# to

be the pseudoinverseQ+ , which gives the least Euclidean norm

of both q̇ and ė∗ − Jq̇ [47], [48]. The control law is then

q̇∗ = q̇∗1 + Pq̇2 (6)

where q̇∗1 = J+ ė∗. A typical reference behavior is an exponential

decay of e to zero ė∗ = −λe, λ > 0.
It may happen that J becomes singular, i.e., rank(J) < r0 ,

where r0 is the nominal rank of J out of the singular configura-

tion. Numerical problems can occur during the transition from

the nominal situation to the singular one. To avoid these prob-

lems, the pseudoinverse is often approximated by the damped

least-square J† defined by [49], [50]

J† =

[
J

ηI

]+ [
I

0

]
(7)

where I is the identity matrix of proper size, and η is a damping

factor, chosen as an additional parameter of the control (typi-

cally, η = 10−2 for a humanoid robot).

D. Projected Inverse Kinematics

Consider a secondary task (e2 , ė
∗
2 , J2). The template (3) is

written as

ė2 − J2 q̇
∗
1 = J2Pq̇2 . (8)

In this case, the differential map is the projected Jacobian Q =
J2P, and the drift isµ = −J2 q̇

∗
1 . The control input q̇

∗
2 is obtained

once more by numerical inversion [20], [21]

q̇∗2 = (J2P)+ (ė2 − J2 q̇
∗) + P2 q̇3 (9)

where P2 is the projector into the null space of J2P . The same

scheme can be reproduced iteratively to take into account any

number of tasks until Pi is null.

In general, rank(J2P) ≤ rank(J2) ≤ r2 , where r2 is the nom-

inal rank of J2 . When the second inequality is strict, the sin-

gularity is said to be kinematic; when the first inequality is

strict, the singularity is said to be algorithmic [51].1 To avoid

any numerical problem in the neighborhood of the singularity,

a damped inverse can be used to invert J2P.

E. Hierarchical Quadratic Program Resolution

1) Generic Formulation: When considering a single task,

the solution obtained with the pseudoinverse (2) is known to be

the optimal solution of the QP min
u

‖Qu − ė∗ − µ‖2 . The great

advantage of the QP formulation is that both linear equalities

and inequalities can be considered, while the pseudoinverse-

based schemes presented previously cannot explicitly deal with

inequalities. A QP is composed of a quadratic cost function to

be minimized, while satisfying the set of constraints [52]. It can

be seen as a two-level hierarchy, where the set of constraints has

priority over the cost. Inequalities are set as the top priority. The

introduction of slack variables is a classical solution to handle

1Both cases are similar in the sense that [
J1

J2
] is singular.

an inequality at the second priority level [53]. In [26], use of

the slack variables was proposed to generalize the QP to more

than two levels of hierarchy and, thus, to build a hierarchical

quadratic problem (HQP) handling inequalities.

The HQP formulation is first recalled in a generic frame. A

generic constraint k is defined by the linear mapAk and the two

inequality bounds (b
k
, bk ), where b

k
and bk are, respectively,

the lower and upper bounds on the reference behavior.2 At level

k, the cascade algorithm that solves the hierarchy (Ak , bk ) is
expressed by the following QP:

min
uk ,wk

‖wk‖2

s.t. b
k−1

≤ Ak−1uk + w
∗
k−1

≤ bk−1

b
k
≤ Akuk + wk ≤ bk (10)

where Ak−1 , (bk−1
,bk−1) are the constraints at all the previ-

ous levels from 1 to k − 1 (Ak−1 = (A1 , . . . , Ak−1)), and Ak ,

(b
k
, bk ) is the constraint at level k.

The slack variable3 wk is used to add some freedom to the

solver if no solution can be found when the constraint k is in-

troduced under the k − 1 previous constraints: wk is variable

and can be used by the solver to relax the last constraint Ak .

On the other hand, w∗
k−1

is constant and set to the result of the

previous optimization of the k − 1 first QP (at each of the itera-

tions of the cascade,w∗
k−1

is augmented with the optimalw∗
k by

w
∗
k−1

:= (w∗
k−1

, w∗
k )). A solution to the strict k − 1 constraint

Ak−1 is then always reached, even if the slack constraint Ak is

not feasible. This corresponds to the definition of the hierarchy.

A classical method to compute the solution of a QP or HQP

relies on an active-search algorithm [27], [52] (see Appendix B),

which implies iterative computations of the pseudoinverse of a

subproblem of the initial QP. Since pseudoinverses are used, the

classical numerical problems can occur in the neighborhood of

singularities. Regularization methods that extend the damping

inverse [50] used in robotics can be applied [54].

The method proposed previously is generic and can be ap-

plied to any numerical problem written with a linear hierar-

chical structure. In that case, it is referred to as HQP (or

cascade of QP) and denoted with the lexicographic order:

(i) ≺ (ii) ≺ (iii) ≺ . . .which means that the constraint (i) has
the highest priority. In the following, we propose a solution

to apply this formulation to invert kinematics and dynamics.

The constraints are then the tasks defined previously, and the

hierarchical solver will be called an SOT or hierarchy of tasks.

2) Application to Inverse Kinematics: When considering a

single task, inversion (6) corresponds to the optimal solution to

the problem

min
q̇

‖Jq̇ − ė∗‖2 . (11)

2Specific cases can be immediately implemented. b
k

= bk in the case of

equalities and b
k

= −∞ or bk = +∞ to handle single-bounded constraints.
3w is an implicit optimization variable whose explicit computation can be

avoided when formulating the problem as a cascade. It does not appear in the
vector of optimization variables u. See [27] for details.



By applying the QP resolution scheme, both equalities and in-

equalities can be considered. Replacing b by ė, the reference

part is then rewritten as

ė∗ ≤ ė ≤ ė
∗
. (12)

For instance, in the case of two tasks with priority order e1 ≺ e2 ,

the expression of the QP is given by

min
q̇ ,w 2

‖w2‖2

s.t. ė∗1 ≤ J1 q̇ + w∗
1 ≤ ė

∗
1

ė∗2 ≤ J2 q̇ + w2 ≤ ė
∗
2 . (13)

In robotics, when a constraint is expressed as an inequality,

it is very likely to be put as the top priority: typically, joint

limits and obstacle avoidance. Using this framework, it is also

possible to handle inequalities at the second priority level (i.e., in

the cost function). A typical case is to prevent visual occlusion

when possible, or to keep a low velocity if possible, without

disturbing the robot behavior when it is not necessary.

In the sequel, the HQP considering linear equalities and in-

equalities will be extended from inverse kinematics to inverse

dynamics.

III. INVERSE DYNAMICS

In this section, the case of a contact-free dynamical multibody

system without free-floating root is considered.

A. Task-Space Formulation

As previously stated, a task is defined by a task function e, a

reference behavior, and a differential mapping. At the dynamic

level, the reference behavior is specified by the expected task

acceleration ë∗, while the control input is typically the joint

torques τ . The operational-space inverse dynamics then refers

to the problem of finding the torque control input τ that produces

the task reference ë∗, using any necessary joint acceleration q̈.

The acceleration q̈ is then a side variable that does not have

to be explicitly computed during the resolution. Contrary to the

case of kinematics, the mapping between the control input τ and

the task space is obtained in two stages. First, the map between

accelerations in the configuration space and in the task space is

obtained by differentiating (5)

ë = Jq̈ + J̇q̇. (14)

Then, the dynamic equation of the system expressed in the joint

coordinates is deduced from the mechanical laws of motion [55]

Aq̈ + b = τ (15)

whereA = A(q) is the generalized inertia matrix of the system,
q̈ is the joint acceleration, b = b(q, q̇) includes all the nonlinear
effects including Coriolis, centrifugal, and gravity forces, and

τ are the joint torques. The generic form (1) is obtained by

replacing q̈ in (15) with (14) [28]

ë − J̇q̇ + JA−1b = JA−1τ. (16)

This equation follows the template (1) with Q = JA−1 , µ =
−J̇q̇ + JA−1b, and u = τ .

The torque τ ∗ that ensures ë∗ is solved using the generic form
(2). It is generally proposed to weight the inverse by the inertia

matrixA. This weight ensures that the process is consistent with

Gauss’ principle [56], i.e., the torques and accelerations corre-

sponding to the redundancy of the task are the closest to the ac-

celeration of the unconstrainedmultibody system. This principle

can be intuitively understood by considering the weight like a

minimization of the acceleration pseudoenergy q̈T Aq̈ [32], [57].

The redundancy can also be explicitly formulated during the

inversion, using the form (3). An SOT can be iteratively built,

with the lower priority tasks being executed in the best possible

way without disturbing the higher priority tasks [58], [59]

τ ∗ = τ ∗
1 + Pτ2 (17)

where P =I−JT (JA−1JT )+JA−1 is the projector in the null

space of JA−1 , and τ ∗
1 =(JA−1)#A (ë∗−J̇q̇+JA−1b).

B. Projected Inverse Dynamics

As earlier, the differential map for the projected secondary

task e2 is obtained by replacing (17) into the robot dynamics

equation in the task space ë2 − J̇2 q̇ + J2A
−1b = J2A

−1τ

ë2 + µ2 = Q2τ2 (18)

with µ2 = −J̇2 q̇ + J2A
−1b − J2A

−1τ ∗
1 , and Q2 = J2A

−1P.

The same weighted inverse is used to invert Q2 [58], [59].

Accordingly, any number of tasks can be added iteratively until

the projector becomes null.

The same singularities as in inverse kinematics may appear

(the dynamics themselves do not bring any new singular case,

since A is always full rank). To avoid any numerical problem,

the damped weighted inverse is generally used. As for the kine-

matics, only tasks defined by equality constraints can be taken

into account using this pseudoinverse-based resolution. To take

into account inequalities, we propose for extending to the dy-

namics the HQP [26] that was previously introduced for the

kinematics.

C. Application of the Quadratic Program Solver

to the Inverse Dynamics

When resolving a given task e while taking into account the

dynamics, both (14) and (15) must be fulfilled. There are two

ways of formulating the QP. First, q̈ can be substituted from

(14) into (15), to obtain the single reduced equation (16). In that

case, the QP only requires solving τ , the variable q̈ being not

explicitly computed

min
τ

‖JA−1τ − ë∗ − µ‖2 . (19)

Alternatively, (14) can be solved under the constraint (15). Using

the hierarchy notation, the HQP is thus (15)≺ (14), or using the

standard QP notation

min
τ ,q̈ ,w

‖w‖2

s.t. Aq̈ + b = τ

ë∗ + w = Jq̈ + J̇q̇. (20)



In that case, both τ and q̈ are explicitly computed. They consti-

tute the vector of optimization variables u = (τ, q̈).
QP (19) has a reduced form, but QP (20) allows any explicit

formulation using the dynamics variables. In the following, we

will show that such an exhaustive formulation is important in

dealing with the contact.

IV. INVERSE DYNAMICS UNDER CONTACT CONSTRAINTS

A. Insertion of the Contact Forces

In the previous section, the considered multibody system was

in free space (no contact forces) and fully actuated (no free-

floating body, for example). The model of the humanoid robot

includes both the contact forces and a zero-torque constraint on

the six first DOF. First, the case of a single contact point denoted

by xc is considered

Aq̈ + b + J⊤
c f = ST τ (21)

where A and b are defined as previously, q̈ is the vector of gen-

eralized joint accelerations,4 f is the 3-D contact force applied

at the contact point xc , Jc = ∂xc

∂q
is the Jacobian matrix of xc ,

5

and S = [0 I] is a matrix that allows us to select the actuated
joints.

The rigid-contact condition implies that there is no motion

of the robot contact body xc , i.e., ẋc = 0, ẍc = 0. For a given

state, it implies the linear equality constraint

Jc q̈ = −J̇c q̇. (22)

If multiplying (21) by JcA
−1 and substituting the expression of

Jc q̈ given by (22), a constraint is obtained, which constrains the

torque with respect to the contact force

JcA
−1J⊤

c f = JcA
−1(ST τ − b) + J̇c q̇. (23)

In this expression, the acceleration does not appear explicitly

anymore. In the basic case, JcA
−1J⊤

c is invertible, and f can be

deduced as [36]

f = (J⊤
c )A−1 # (ST τ − b) + (JcA

−1J⊤
c )−1 J̇c q̇. (24)

This expression of f can be reinjected in (21) to obtain a re-

formulated dynamic equation where the force variable does not

appear explicitly anymore

Aq̈ + bc = PcS
T τ (25)

where Pc = (I − Jc
#A−1

Jc)
T = (I − (JcA

−1)#AJcA
−1) is

the projection operator of the contact,6 and bc = Pcb +
J⊤

c (JcA
−1J⊤

c )−1 J̇c q̇. As earlier, the differential map between

the task and the torque input is expressed through the interme-

diate variable q̈ by inserting (25) in (14)

ë + µ = Qτ (26)

4To be exact, q̈ should be written [
v̇f

q̈A
], where vf is the 6-D velocity of the

robot root, and qA is the position of the actuated joints. For the ease of notation,
q, q̇, and q̈ will be used in this paper.

5The coordinates of xc , f , and Jc have to be expressed in the same frame,
for example, the one attached to the corresponding robot body.

6The exact same form can be obtained if Jc is rank deficient [60].

with µ = −J̇q̇ + JA−1bc and Q = JA−1PcS
T . By inverting

(26) and choosing a proper weighted inverse, the obtained for-

mulation is equivalent to the operational-space inverse dynamics

developed in [61] (see Appendix C). When inverting (26), it is

possible to explicitly handle the redundancy using the inversion

template (3). The scheme can be propagated to any levels of hier-

archy. The general form of the inverse for the second level of the

hierarchy is J2P1A
−1PcS

T , where P1 is the projector into the

null space of the main task. In general, rank(J2P1A
−1PcS

T ) ≤
rank(J2A

−1PcS
T ) ≤ rank(J2) ≤ r2 . If the first inequality is

strict, this is the algorithmic singularity encountered in inverse

kinematics. If the last inequality is strict, it is a kinematic sin-

gularity. If the intermediate inequality is strict, the singularity

is due to the dynamic configuration of the multibody system

in contact, and could be called a dynamic singularity.7 As ear-

lier, a damped inverse is used in practice to avoid the numerical

problems in the neighborhood of the singularity.

As previously shown, (26) follows the template (2) and can

be directly formulated as a QP. The QP can be expressed under

a reduced form, as proposed in [2]. Or more simply, the HQP

(20) can be reformulated to consider the dynamics in contact.

Using the HQP notation, the program for one task is (21) ≺
(22)≺ (14). The variables f and q̈ are then explicitly computed

u = (τ, q̈, f). This HQP was proved to be equivalent to the

reduced inversion in [1].

B. Rigid-Point-Contact Condition

For a single point in rigid contact with a surface, there are two

complementary possibilities: either the force along the normal

to the contact surface is positive (the robot pushes against the

surface and does not move), or the acceleration along the normal

is positive (the robot contact point is taking off, and does not

exert any force on the surface). Both possibilities are said to be

complementary since one and only one of them is fulfilled. This

is mathematically written as

ẍ ≥ 0 (27)

f⊥ ≥ 0 (28)

ẍf⊥ = 0 (29)

where f⊥ is the component of f corresponding to the normal

direction. The complementary condition is a direct expression

of d’Alembert–Lagrange Virtual Work principle, in the simple

case of rigid contact. By writing (21) and (22), it is implicitly

considered that the robot is in the first case: no movement (22)

and positive normal force. In consequence, the generated control

must also fulfill the second condition (28).

Very often, only the zero-motion condition constraint (22) is

considered [36]. As a consequence, an infeasible dynamic mo-

tion can be generated since the second contact condition (28) is

not explicitly verified. A first solution can be to saturate the part

of the control that does not correspond to gravity compensation

7The three cases are similar in the sense that the matrix

[
J1 0 0
J2 0 0
A Jc −ST

]

is singular.



when the positivity condition is not satisfied [59]. However,

such a solution is very restrictive, compared with the motions

that the robot can actually perform.

It is straightforward to take into account the two aforemen-

tioned conditions in an HQP. In that case, the contact forces

have to be explicitly computed as one of the QP variables

u = (τ, q̈, f). The HQP is then (21) ≺ (22) ≺ (28) ≺ (14).

The two first levels (21), (22) are always feasible. However,

it may happen that (28) is not. This case is sometimes referred

to as strong contact instability [62]. Whatever the motions of

the multibody system are, the contact cannot be maintained. In

practice, the solver will find an optimal u, but with nonzero

slack variables corresponding to (28). The solution u is then

meaningless, since it is dynamically inconsistent. To obtain a

consistent control in that case, a change of behavior should be

triggered, with the robot removing one of its contacts from (22)

and trying to find another solutionwithout this contact.However,

the nonzero slack on (28) will only appear in extreme cases, for

example, when the robot is already falling, and, in general, it is

already too late to do anything to restore the balance.

The typical situation with a humanoid robot requires more

than one contact point. For example, when one rectangular foot

is in contact with the ground, at least four contacts points are

needed, with as many force variables and contact constraints.

It is then very costly to handle several bodies in contact. In the

following, we focus on the case of planar rigid contact, and

propose a reduced formulation such that the cost of the HQP

does not increase linearly with the number of points in contact.

V. REDUCED FORMULATION OF RIGID PLANAR CONTACTS

Instead of considering one variable per contact force f , the

contact forces are summarized by the generalized 6-D (spatial)

force exerted by the body contacting the environment

Aq̈ + b + J⊤
c φ = ST τ (30)

where Jc is now the Jacobian of the contacting body that is

expressed on any arbitrary fixed point c of the body, and φ is the

6-D force (linear and angular components) expressed at c. The

contact is supposed to occur between two rigid planar surfaces:

one of them being a face of one robot body, the other one

belonging to the environment. If the robot is in contact with two

or more planar surfaces at the same time, several planar contacts

are to be considered. The point c denotes the arbitrary origin of

the reference frame attached to the robot body in contact (c can

be on the contact surface as earlier or anywhere on the contact

body, e.g., on the last joint). A rigid planar contact is defined

by at least three unaligned points of the body pi , i = 1, . . . , l
(l ≥ 3), that define the boundaries of the contact polygon. For
i = 1, . . . , l, fi denotes the contact force applied to pi . The

vector f of the contact forces fi is related to φ by

φ =

[ ∑
i fi∑

i pi × fi

]
= X




f1

...

fl


 = Xf (31)

with

X =

[
I I . . . I

[p1 ]× [p2 ]× . . . [pl ]×

]

where the first three components of φ are the linear part of

the force vector, the second three components are the angular

part, and [pi ]× is the cross-product matrix defined by [pi ]×z =
pi × z for any vector z. Using this notation, the necessary and

sufficient condition to ensure the contact stability (in the sense

that the contact remains in the same phase of the complementary

condition, i.e., no take off) is that all the normal components f⊥
i

of the contact forces fi are positive, expressing the fact that the

reaction forces of the surface are directed toward the robot

f⊥ ≥ 0 (32)

with f⊥ = Snf = (f⊥
1 , f⊥

2 , . . . , f⊥
l ) being the vector of the nor-

mal components of the forces at the contact points, andSn being

the matrix selecting the normal components.

A. Including the Contact Forces Within the Quadratic

Program Solver

Condition (32) must now be introduced in the HQP that is

proposed at the end of Section IV-B.

1) First Way of Modeling the Problem: The constraints

should be written with respect to the optimization variables,

while (32) depends on f . A first way of writing (32) with re-

spect to the optimization variables is to use the linear map X

between φ and f , given by (31). In order to compute f , (31)

should be inverted by using a particular generalized inverseX#

f = X#φ. (33)

The normal component f⊥ is then given by

f⊥ = SnX#φ = Fφ. (34)

The condition of positivity of f⊥ is then written with respect to

the optimization variables

Fφ ≥ 0. (35)

The resulting HQP is (30)≺ (22)≺ (35)≺ (14), with the vector

of optimization variables being u = (q̈, τ, φ).
However, it is possible to show that (35) is only a sufficient

condition of (32), which is too restrictive. In fact, the map X

is not invertible. Thus, by choosing a specific inversion .# ,

an unnecessary assumption is made, and it may happen that an

admissibleφ produces a negative f⊥ = S⊥X#φ. Fig. 2 displays

the domain reached by the center of pressure (COP): For a

necessary and sufficient condition, the whole support polygon

should be reached. Using the 2-norm, only the included diamond

is reached, as presented in Fig. 2. Various included quadrilaterals

are reached when using other norms for the inversion operator
# .

2) Using Contact Forces as Variables: The problem is that

the forces fi cannot be uniquely determined from φ, while it

is possible to determine φ from fi . To cope with this problem,

we propose including the contact forces f in the optimization

variables of the QP resolution. Condition (32) is then directly
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Fig. 2. Random sampling of the reached support region. The actual support
polygon is the encompassing rectangle. The point clouds display the ZMP of
random forces admissible in the sense of (35). Random forces φ are shot, and the
corresponding f = X# φ are computed. If φ respects (35), the corresponding
COP is drawn. Each subfigure displays the admissible forces for a different
weighted inversion (the Euclidean norm is used on the top left, and random
norms for the three others). Only a subregion of the support polygon can be
reached, experimentally illustrating the fact that (35) is a too-restrictive sufficient
condition.

written with respect to the variables u = (τ, q̈, φ, f), with the

HQP (30) ≺ (22) ≺ (31) ≺ (32) ≺ (14).

Compared with the HQP formulated at the end of Section IV-

B, this new formulation considerably reduces the size of Jc , and,

thus, the whole complexity of the resolution scheme. Adding φ

inside the variables acts as a proxy on the bigger dimension

variable f . The contact forces only appear for the positivity

condition (32) and in the relation with φ (31). The HQP is

now sparse on the column corresponding to f , which could be

optimally exploited only if the solver is sparse. In the following,

we rather propose reducing the formulation, while making the

constraint matrix dense.

3) Reducing the Size of the Variable f : It is possible to de-

couple in (31) the relation between φ and the tangent compo-

nents of f . φ was previously expressed at an arbitrary point c of

the contact body (φ = cφ). Consider the point o chosen at the

interface of contact (e.g., o is the projection of c on the contact

surface). oφ denotes the 6-D forces at o, which is expressed in

terms of oφ as follows:

oφ =

[
fo

τo

]
=

[
I3 03

[oc]× I3

]
cφ = oXc

cφ (36)

with ox being the coordinates of any quantity x in the frame Fo

centered at o, having its z-axis normal to the contact surface.

From (31) and (36), it comes

ofx =
∑

i

fx
i = cfx (37.1)

of y =
∑

i

f
y
i = cf y (37.2)

of z =
∑

i

f z
i = cf z (37.3)

oτx =
∑

i

−opz
i f

y
i +

∑

i

op
y
i f z

i = −cz cf y + cτx (37.4)

oτ y =
∑

i

−opx
i f z

i +
∑

i

opz
i f

x
i = cz cfx + cτ y (37.5)

oτ z =
∑

i

−op
y
i fx

i +
∑

i

opx
i f

y
i = cτ z . (37.6)

Since o is coplanar with the pi , the
opz

i are null. The previous

expression reveals a decoupling in cφ. The forces ofx,y and the

torque oτ z are expressed in terms of f
x,y
i . The force of z and

the torques oτx,y are a function of f z
i . In the QP,

ofx,y and oτ z

are unconstrained and can be removed along with the associated

constraints (37.1), (37.2), and (37.6). The reduced rigid-contact

constraint can be expressed as follows:

Qc

[
φ

f⊥

]
= 0

f⊥ ≥ 0 (38)

with

Qc =




0 0 −1 0 0 0 1 1 . . . 1

0 cz 0 −1 0 0 p
y
1 p

y
2 . . . p

y
l

−cz 0 0 0 −1 0 −px
1 −px

2 . . . −px
l


.

TheHQP is then (30)≺ (22)≺ (38)≺ (14) with the optimization

variables u = (τ, q̈, φ, f⊥).

B. Generalization to Multiple Contacts

Equation (30) considers one single body in contact. If several

bodies are in contact or one body is in contact with several

planes, a force φi is introduced for each couple plane body in

contact

Aq̈ + b +
∑

i

J⊤
i φi = ST τ. (39)

For each body in contact, the same reasoning can be applied

separately. Support polygons and normal forces f⊥
i have to be

introduced. For each contact, f⊥
i is constrained to be positive

and can be mapped to φi using (36). The zero-motion constraint

corresponding to contact i is denoted by (22.i) and the positivity

constraint by (38.i), where i refers to the index.

C. Multiple Tasks and Final Norm

Similarly, for several tasks, (14.j) denotes the constraint for

each task j (using the same notation where j refers to the index).

After adding all the tasks, someDOFmay remain unconstrained.

In that case, it is desirable to comply with Gauss’ principle. This

is possible by imposing q̈ = a0 as the least priority, where a0 is

the acceleration of the unconstrained system.8 This has strictly

the same effect as weighting all the pseudoinverses by A−1 , as

done in (17) [56]. However, no damping mechanism acts in the

corresponding DOF that would reduce the motion energy and

stabilize the system. The task-function formalism requires the

8Similarly, the constraint can be imposed on a least-square τ .



system to be fully constrained to ensure its stability in terms

of automatic control (Lyapunov stability, [13]). On a physical

robot, damping is always present. For perfect systems like sim-

ulations, where damping is absent or is perfectly compensated,

it is better to introduce, at the very last level, a task to cope with

the case of an insufficient number of tasks and constraints to

fulfill the full-rank condition

q̈ = −Kq̇. (40)

Various full-rank constraints could have been considered (min-

imum acceleration, distance to a reference posture, etc.). The

choice of using the minimum velocity constraint is arbitrary.

Finally, the completeHQP forn contacts andk tasks iswritten

as (39) ≺ (22.1) ≺ (38.1) ≺ · · · ≺ (22.n) ≺ (38.n) ≺ (14.1)

≺ · · · ≺ (14.k) ≺ (40), with the optimization variables u =
(τ, q̈, φ1 , f

⊥
1 , . . . , φn , f⊥

n ).

D. Opening to Other Classes of Contacts

The model (22)–(38) is built on the rigid point contact. From

the basic point model, many other variations can be built. In

particular, it is straightforward to obtain edge contact. Elastic

contact can be defined by modifying the equation of motion

(22) [41]. Linearized friction cones can also be considered, by

replacing J⊤
c f with J⊤

c Gλ and f⊥ ≥ 0 with λ ≥ 0, where G

is a family of generators of the linearized cone, and λ are the

multipliers of these generators [38], [39]. Motions with slips are

made possible by removing the motion constraint (22) in the

tangent directions, and setting a constraint on the tangent force

to be outside the friction cone.

However, the limitation in the viewpoint of real-time control

is the size of the obtainedQP formulation. Typically, a good cone

approximation is obtained with 12 generators, which introduce

12 new variables per point of contact. The prospectives of this

study for humanoid robot control are to find reduced formula-

tions to handle these situations. In the remainder of this paper,

the reduced rigid planar formulation is used, since it maintains a

relatively low computational cost, while coveringmany possible

situations with the humanoid robot.

VI. CONTROL LAW ROBUSTNESS

A. Comparison of (38) With the Zero-Moment Point Condition

A classical situation is to have one or two feet of the hu-

manoid robot in contact with a flat horizontal floor. In this case,

a classical condition to enforce the contact stability is to check

that the ZMP stays inside the support polygon [63], [64]. In this

section, this condition is proved to be equivalent to (32).

Proposition VI.1: In the case of contact with a horizontal

floor, the rigid-contact condition (32) is equivalent to the well-

known contact stability condition, which requires that the ZMP

belongs to the support polygon.

1) Sufficient Implication: As earlier, the robot is supposed

to be in single support.9 The contact surface is supposed to be

horizontal. The ZMP (also called COP [65]) can be defined as

9The same reasoning holds with several bodies in contact with the same
horizontal plane.

the barycenter of the contact points pi delimiting the contact

surface of the foot with a horizontal floor, weighted by the

normal component f⊥
i of the contact forces fi at these points

10.

z =
1

Σif
⊥
i

Σipif
⊥
i . (41)

In affine geometry, it is well known that the convex hull of a

polygon can be written as the set of all positive-weight barycen-

ters of the vertices [66]. The rigid-contact condition defined by

(32) ensures that each f⊥
i is positive. Consequently, (32) to-

gether with (41) ensures that the ZMP belongs to the convex

hull of the contact points pi which, by definition, is equal to the

support polygon.

2) Necessary Implication: On the other hand, if the ZMP

belongs to the support polygon, there always exists a distribution

of contact forces fi at the points pi , having positive components

f⊥
i , and such that the ZMP is the barycenter of the pi weighted

by the f⊥
i . This is sometimes referred to asweak contact stability

[62] for which the ZMP is known to be a reduced condition [67].

When the support polygon is defined by more than three contact

points (l > 3), an infinite number of possible barycenter weights

f⊥
i can be found to define the ZMP. For given weights, one of

the f⊥
i can be negative (this is typically what happens in Fig. 2).

However, since the ZMP is inside the convex hull, there is at

least one combination of nonnegative weights that reaches it.

B. Brief Stability Analysis

The inverse dynamics schemes are known to be sensitive to

modeling errors [68]. In particular, if the inertia parameters are

not perfectly known, the application of the reference torques

will lead to different accelerations. The estimated value of X

is denoted by X̂ . The solution of the QP is equivalent to the

solution given by the pseudoinverse if none of the positive-

force constraints are active otherwise, it has a similar form with

an additional projection and can be written for one task

τ = (ĴÂ−1 P̂f ST )+ (ë∗ + µ̂) (42)

wherePf is the projection operator onto the contact zero-motion

constraint (22) and onto the set of contact positive-force con-

straints (38) that are active. Using (26), the observed task accel-

eration when applying this control law, which is also denoted

by .̂, is

̂̈e = JA−1PcS
T (ĴÂ−1 P̂f ST )+ (ë∗ + µ) − µ. (43)

Since PcPf = Pf , ̂̈e = ë∗ if all the estimations are perfect.

If the estimations are biased, applying the control (42) in

closed loop at the whole-body level is known to keep the

stability properties of the control law ë∗ in the task space iff

JA−1PcS
T (ĴÂ−1 P̂f ST )+ is definite positive [13]. When the

estimation error is due to an inaccurate dynamic model, a clas-

sical solution to reduce the estimation error is to rely on a

time-delay estimation, i.e., reporting the biases observed at one

iteration of the control on the next iteration [69]. However, this

10The foot is usually a rectangle but any shape delimited by three or more
contact points can be considered as well.



technique cannot perfectly cancel the errors of estimation; thus,

(43) still holds.

The reference ë∗ is not perfectly tracked. It is also true for

the contact forces computed by the solver. Indeed, the observed

forces are

φ̂ = (Jc
T )#A ĴT

c φ∗ + (JcA
−1Jc

T )−1JcA
−1Âq̈∗ (44)

where φ∗ and q̈∗ are the reference force and acceleration com-
puted by the HQP, and J̇c q̇ is neglected. The second term is

close to 0 when Â is not too far from A. Similarly, the first term

is nearly the identity matrix when the estimation is correct. The

previous equation can be summarized by

φ̂ = (I + ǫ1)φ
∗ + ǫ2 q̈

∗ (45)

with ǫ1 and ǫ2 being two matrices that tend to zero when the

estimation tends to perfection. When the ǫi are not null, the

observed force φ̂ is biased with respect to the solver predictions.

If the bias is too great, there is no guarantee that the observed

force φ̂ will maintain the contact; then, the property of stability

can be lost.

In conclusion, applying the computed torques in closed loop

ensures the stability of the control as long as the observed forces

respect the contact positivity-force constraint.

C. Contact Condition as a Qualitative Robustness Indicator

The previous stability analysis is not very instructive in prac-

tice, since it is barely possible to predict when the observed

φ̂ will keep the contact stability. The robustness of the control

scheme thus relies on the behavior of φ̂. It is interesting to pro-

vide an indicator of how easy it is for φ̂ to leave the acceptable

domain. When considering one single point in contact as in Sec-

tion IV, this indicator is straightforward to choose. Consider the

normal force value f⊥∗ computed by the solver. If f⊥∗ is large,
then for small ǫ1 , ǫ2 , we can be very confident that f̂⊥ will be

positive and keep the contact stable. Then, for one single contact

point, the positivity of f⊥∗ is a good indicator of the robustness
of the control.

For more than one single contact point, it is not possible to

use a direct combination of the normal forces as an indicator.

Indeed, there is an infinite number of possible force values,

all of them being equivalent in terms of the robot behavior.

Once more, this is connected to the results displayed in Fig. 2.

The computed solution may include one zero normal force,

while another solution exists with strictly positive values. When

considering a single planar contact, the ZMP is a good indicator

of robustness: when the predicted ZMP z∗ is far inside the

support polygon, thenwe can be very confident that the observed

ZMP ẑ will stay inside the support polygon, which means in

return that all the f̂⊥ are positive.

If the contacts are not coplanar, the ZMP is not defined. In

that case, the generalized zero-moment point (GZMP) [70] has

been proposed. Contrary to the ZMP or to (38), the GZMP is

not a constructive criterion, i.e., it has not been used to generate

a motion or a control law. The idea of the GZMP is to find

from the 3-D contact points a plane that will act like the floor

plane for the ZMP. On this plane, all the force boundaries are

projected, defining a 2-Dpolygon. TheGZMPexists in this same

plane. The contact-stability criterion says that the GZMP should

remain inside the 2-Dpolygon. TheGZMP is easy to display. It is

easy to visualize the distance to the boundaries and thus to have

a qualitative evaluation of the motion robustness with respect

to the contact stability. The GZMP needs some implementation

work in order to be calculated, since the 2-D projection plane is

deduced from geometrical computations. Moreover, it is only an

approximated criterion, since the friction forces are neglected.

To cope with these limitations and obtain a generative criterion,

the GZMP was augmented in [67]. However, this last criterion,

like (38), cannot be easily plotted, and is thus not relevant to

judging the robustness of the obtained motion.

Consider the six first rows of the dynamic equation. The

dependence on τ disappears

Āq̈ + b̄ = J̄cf (46)

where Ā, b̄, and J̄c are the first six rows of, respectively, A,

b, and Jc
T . For a given q̈∗, the left term is constant, which

is denoted by ψ∗. It corresponds to the actuation of the free-

floating body that cannot be accomplished by the motors. The

variable f can be partitioned in two parts f = (f♥, f♠): f♥ is

unconstrained, while f♠ is subject to the positivity constraint.

J̄c is similarly partitioned into J̄♥ and J̄♠. The setK♠ := {ψ =
J̄♠f, f > 0} is a 6-D cone that can be expressed by its facets.

The motion is robust to the parameter error if the point ψ∗ −
J̄♥f♥ = (I − J̄♥J̄♥+ )ψ∗ is deep inside the cone. The distance
from this point to the closest facet of K♠ can be used as a

measure of the robustness of the motion. The scaling between

torques and forces is done using a characteristic length of the

system (1 m for a human-size robot). In the following, this

criterion is referred to as robustness criterion.

VII. EXPERIMENTS

Three sets of experiments are presented in this section. The

first one presents a simple oscillatory motion that illustrates the

saturation of the contact-stability constraints. The second one

presents a complex sequence of tasks to make the robot sit in

an armchair using several successive contacts. This motion is

also executed by the real robot. The last experiment presents a

dynamic transition of contacts. First, the setup is detailed.

A. Experimental Setup

The inverse formulation of the dynamic equation of motion

(30) is given to the HQP solver. However, since it computes

explicitly both τ and q̈, it solves simultaneously the forward and

inverse dynamics of the robot. Both values can then be used

as control input. The acceleration q̈ can be integrated in simu-

lation, or provided as control input to the robot servo control;

or the torques can be given as the robot control, or provided

to a dynamics simulator. On current humanoid robots, such as

HRP-2, only the first solution is possible.11 However, this so-

lution has the drawback that the servo will be on the position

11The second solution will be possible with the next humanoid robot gener-
ation, e.g., Romeo [71] or DLR [72].



variables, while as explained in the previous section, the ro-

bustness mainly relies on the accuracy of the force variables. In

simulation, both solutions are possible. The second solution is

more beneficial, since it makes it possible to double check the

dynamic computations.

In practice, we have used this last solution. The dynamic sim-

ulator AMELIF [73] was used to resolve the forward dynamics

from the computed torques τ ∗. The simulator checks the colli-
sion, computes the acceleration from the collision set and the

torque input using a linear solver, and numerically integrates q̈

using a classical Runge–Kutta of the fourth order. The current

set of contacts is then provided to the control solver, along with

the current position and velocity of the robot. The control is

updated every 1 ms. It is computed using the control frame-

work SOT [34] and the dedicated solver [27]. The result of this

simulation is a joint trajectory of the robot, which complies to

the multibody dynamics. This trajectory is replayed on the real

robot using a position-control mode.

The task set used in the three presented motions is the fol-

lowing. A first task function is used to control the position and

orientation of one operational point of the robot (e.g., grippers,

head, chest). The task error is the position p and angle-vector

orientation rθ [74] of the operational point with respect to a

reference p∗, rθ∗ expressed in the world frame

eop =

[
p − p∗

rθ ⊖ uθ∗

]
. (47)

The reference acceleration is computed from this error as a

proportional-derivative control law

ë⋆
op = −λpeop − λd ėop (48)

where ėop = Jop q̇ is the velocity in the task space and the gains

λp and λd are used to tune the convergence velocity (usually,

λd = 2
√

λp ). For tracking a moving target, a fixed high gain is

used for λp . When reaching a fixed target, an adaptive gain is

typically used

λp : ‖e‖ → (λ0 − λ∞)eβ‖e‖ + λ∞ (49)

where λ0 is the gain when the error is null, λ∞ is the gain far

from the target, and β adjusts the switching behavior between

the gains. A typical setting is (λ0 , λ∞, β) = (450, 15, 100). A
second task egaze is used to servo the projection s of one point

of the environment on the right camera plane to a reference

position s∗ [14]

egaze = s − s∗. (50)

The reference acceleration ë∗ is also defined by (48). The torque
magnitude is also bounded. Since the torques are included in the

vector of optimization variables, it is trivial to express the torque

limits by a simple bound on these variables

τ ≤ τ ≤ τ (51)

with τ = −τ being the maximum torque value.

Similarly, bounds have to be set on the joint positions. Since

the positions are not variables of the solver, the constraint is set

on the joint accelerations

q ≤ q + TS q̇ +
TS

2

2
q̈ ≤ q (52)

where q and q denote the lower and upper joint limits, respec-

tively, and TS is the length of the preview windows. In theory,

the control sampling time ∆T = 1 ms should be used for TS .

In practice, a smoother behavior can be obtained by adjusting

this value TS := ∆T
λs

where λs can be tuned as the gain of the

task. We used λs = 0.1 to generate the following motions.

B. Experiment A: Swing Posture

1) Description: The objective of this experiment is to vali-

date the contact stability constraint. It is inspired by a biome-

chanics experiment, which aims to test the human swinging

posture behavior with respect to the same constraints [75]. A

tracking task is imposed upon the robot head to make it os-

cillate. Depending on the frequency and the amplitude of the

oscillation, forces are obtained at the contact points, which may

saturate the contact constraint. The task ehead , which is given by

(47), is imposed upon the head operational point, where only the

translation on the forward axis is selected. The reference posi-

tion is given by a time-varying sinusoid, around a central point

xc = 0.02 and with amplitude of 5 cm and frequency 0.3 Hz

(low frequency), 0.56 Hz (medium frequency), or 0.9 Hz (high

frequency). The gain is set to λp := 250 to ensure good tracking.

The complete SOT is (39)≺ (22)≺ (38)≺ (51)≺ (52)≺ ehead

≺ (40).

In theory, the contact points are defined from the 3-D model

of the robot. However, in practice, we never consider the real

support polygon, but a smaller one. This simple trick ensures

increased robustness of the motion when trying to replay it on

the robot. For example, on the feet, the support polygon is often

defined as a square of 4 cm centered below the ankle axis [76],

[77]. The obtained robustness can be evaluated afterward with

respect to the real support polygon.

The motion is played four times. In the first two executions,

both feet are flat on the ground and the reference is oscillating

at low and medium frequencies, respectively. For the next two

executions, the right gripper contact is added, and the motion

is played at medium and high frequencies. In the following,

the four motions are referred to as 2pt-low, 2pt-medium, 3pt-

medium, and 3pt-high, respectively.

2) Results: The experiment is summed up by Figs. 3–6. The

motion is displayed in Fig. 3. The robot is oscillating forward

and backward to follow the head reference. The two motions

2pt-low and 2pt-mediumwere already detailed in [1] where the

plots of joint positions and torques can be found. When only the

feet are contacting, the stability of the motion can be evaluated

by displaying the ZMP, plotted in Fig. 4. At low frequency, the

ZMP does not saturate because the demanded accelerations are

small enough. Atmedium frequency, the accelerations are larger

and the ZMP saturates. Since the real support polygon is about

20 cmwide, there is a large offset that ensures a good robustness

when executing this motion on the real robot.

The robustness can be evaluated using the criterion pro-

posed in Section VI-C. The contact constraints of the solver are
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Fig. 3. Experiment A. (Top) Snapshots of the oscillatory movement 2pt-
medium. (Bottom) Feet and ZMP positions at the corresponding instants. The
ZMP saturates on the front when the robot is reaching its top amplitude and
decelerates to go backward. Similarly, the ZMP saturates on the back.
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Fig. 4. Experiment A. ZMP position along the forward (x) axis for the two
motions with only the feet contacts. The support polygon is a 4-cm-wide square
centered on the ankle joint. The ZMP does not saturate when the motion oscil-
lates at low frequency. It saturates at medium frequency.
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Fig. 5. Experiment A: Robustness criterion (see Section VI-C). For the first
two motions 2pt-low and 2pt-medium, the criterion is given with respect to
the support polygon defined in the solver (small contact surface) in bold, and
with respect to the real support polygon taking into account the friction cone
(linearized by twelve facets) in nonbold. This criterion behaves similarly to
the distance of the ZMP to the support polygon. The criterion is plotted for
3pt-medium and 3pt-high. If the solver support polygons are considered, the
distance is infinite. It is only plotted for the distance to the friction cone.
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Fig. 6. Experiment A: Computation time. For the motion 2pt-medium, the
saturation of the force constraints clearly induces an increase of the compu-
tation cost, whereas for 2pt-low, the cost remains constant. For 3pt-medium,
the cost is constant (no saturation) but higher in average due to the additional
contact. Finally, the cost of 3pt-high is higher and varies when the constraints
are saturated.

projected into the space of the spatial forces expressed at the

waist point. Then, the distance of the point ψ∗ (46) to this con-

straint set is computed. The result is plotted in Fig. 5. First, the

distance is computed to the constraint set of the solver (the 4-cm-

wide support polygon). As expected, the distance is null when

the ZMP saturates. More interestingly, the distance can be com-

puted to the real constraints by taking into account the true poly-

gon as well as the linearized friction cones at the contact points.

The friction coefficient was set to K = 0.5. In that case, the

robustness criterion is always strictly positive, showing that the

motion is robust to small perturbations or model uncertainties.

Using only the feet as contacts, it is not possible to follow

the reference at high velocity. A third contact point is added to

increase the stability domain. The contact polygon is a square

of 5 cm centered at the gripper terminal point. Contrary to the

ZMP, the robustness criterion (see Section VI-C) is still valid

with noncoplanar contacts. When the friction cones are not con-

sidered (slidingless contact), it is always possible to find a set

of contact forces following a given center of mass (COM) ac-

celeration (the system is said to be in force closure [78]). In that

case, the distance to the constraint set is always infinite. The

robustness criterion is finite when the friction cones are consid-

ered. The friction coefficient at the gripper is set to K = 0.1. At

medium frequency, the motion can be considered very robust

since the criterion is always very far from 0. If the frequency is

increasing, the criterion remains smaller. It then jumps from one

constraint edge to another, which explains the discontinuities.

The computation time depends on the number of contacts, tasks,

and active constraints, as shown in Fig. 6.

C. Experiment B: Sitting in the Armchair

1) Description: The second experiment illustrates the possi-

bilities of multiple noncoplanar contacts during a more complex

sequence of motion. The robot sits in an armchair (see Fig. 7).

First, contacts of the left then right grippers are found with

the armrests to increase the contact stability domain. Then, the

pelvis is brought in contact with the seat.

At the highest priority of the stack, the limits (51) and (52)

ensure that the joints and actuator limits are respected. Two

tasks erh and elh , which are defined by (47), are set on each

robot gripper to control the position and orientation toward the

corresponding armrest. To prevent a collision when grasping, an

intermediate point is first reached, above the grasping position.

The contact of each gripper with the armrest is realized by the

rear part of the opened gripper. The support polygon is then a

5-cm-wide square. To improve the naturalness of the motion,

a task egaze , which is defined by (50), is set to constrain the

gaze toward the armrest to be grasped. After each grasp, the

gaze is brought back in front of the robot. Finally, the waist

is controlled by a task ewaist also defined by (47) where only

the vertical position and sagittal rotation are active. The waist

is constrained to remain vertical and to move down to the seat.

The complete SOT is defined by (39) ≺ (22) ≺ (38) ≺ (51) ≺
(52) ≺ ehand ≺egaze ≺ ewaist ≺ (40), with ehand being the right

or left hand task, when active. The temporal sequence of tasks

is given in Fig. 8. Essentially, the robot looks left and bends to

grasp the left handle; then, it looks right and bends to grasp the
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Fig. 7. Experiment B: Snapshots of the motion executed on the real HRP-2 robot. The robot is standing on both feet (t = 0 s). It first looks left and grasps the
left armrest t = 7 s. It then looks right, grasps the right armrest (t = 15 s), and, finally, sits (t = 19 s).
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Fig. 8. Experiment B: Sequence of tasks and contacts. The gaze task focuses
sequentially on the left and right armrests and on a virtual point in front of the
robot. The pregrasp tasks are set at the vertical 10 cm above the grasp position.
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several joints move in reaction to overcome the saturation.
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Fig. 10. Experiment B: Vertical forces distribution.
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Fig. 11. Experiment B: Position of COM. The three phases correspond to
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finally, both feet and grippers). First, the COM stays forward, but is, finally,
moved backward to reach the second armrest and move the pelvis down to the
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Fig. 12. Experiment B: Robustness criterion (see Section VI-C). The distance
is computed with respect to the friction cones. The friction coefficient at the
armrests is roughly estimated to be five times less than at the sole. The less
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Fig. 13. Experiment B: Computation time.



right handle; finally, using both handle supports, it moves the

pelvis down to sit.

2) Results: The experiment is summarized in Figs. 7–13.

The key frames of the motion executed by the robot are given in

Fig. 7. The sequence of tasks is summarized in Fig. 8. On each

of the following figures, the chronological sequence is recalled

by vertical stems at the transition instants. During the motion,

the joint range is extensively used. The most representative joint

trajectories are plotted in Fig. 9. The neck joint reaches its limit

while looking left. In reaction, all the other aligned joints move

to overrun the neck limitation (chest joint of course, but also

hip and ankle joints). The right hip then reaches its limit. In

consequence, all the motions of both legs are stopped, due to a

lack of DOF to compensate this limit. The chest joint absorbs all

the subsequent overrun to fulfill the task. Again, the neck joint

reaches its limitwhen looking right. This time, the velocity of the

joint when it reaches its limit is higher, which leads to a strong

acceleration of the chest, and consequently brings the neck out

of its limit. This behavior could be damped if necessary by

tuning λs in (52). The chest joint, finally, reaches its limit at the

end of the right-grasp task, which produces a limited overrun on

the other joints. All the joints are properly stopped at the limit,

and can leave the neighborhood of the limit without being stuck,

as it may appear with some avoidance techniques.

The contact with the two armrests is very useful to control

the descent of the waist. The vertical forces on each support are

plotted in Fig. 10. In the beginning, the weight is fully supported

by the two feet, as shown in Fig. 11. After t = 8 s, the left arm

is used to sustain the robot. However, the robot upper body is

still in front of the chair, and this contact is not fully used yet.

In order to reach the second armrest, the robot has to move

its weight back (see Fig. 11) and use the left-arm contact to

ensure its balance: nearly half of the weight is then supported

by the arm. Finally, the right armrest is grasped, and the robot

distributes its weight on the four contacts equally.

Neither the COM nor the ZMP can give a proper estimation

of the stability, since the motion is neither quasi-static nor sup-

ported by planar contacts. The robustness estimator presented in

Section VI-C is plotted in Fig. 12 with respect to the linearized

friction cones at both feet and grippers. The motion is very

stable, except at the end of the motion, when the waist moves

down. At that time, the robot is using the tangent forces of the

grippers on the armrest, which nearly saturates the friction cone.

In consequence, this part of the motion is less robust when exe-

cuted by the real robot. Indeed, since the armrests do not respect

the hypothesis of rigid contact and due to this lack of robustness,

it can be observed that the toes nearly leave the ground during

this phase of the motion. This effect is very interesting, since

it confirms the relevance of the robustness criterion. Of course,

this undesirable effect could be avoided by setting a more ac-

curate model of the environment or adding a safety limit to the

positivity constraint in the solver.

Finally, the computation times are plotted in Fig. 13. The

SOT is nearly full. In that case, the computation cost is around

20 ms per iteration, i.e., five times the real time if controlling the

robot at 200 Hz. The computation cost depends on the number

of tasks and even more on the number of contacts, as shown by

the computation increase at t = 8 s and t = 18 s.

D. Experiment C: Dynamic Contact Transition

1) Description: At the beginning of the motion, the robot is

standing on both feet and its COM is artificially pushed forward

using a task on its chest. The robot is then out of its domain of

quasi-static stability. The only solution to restore the balance is

to change the set of supports. The two grippers (first the left,

then the right) are then sent forward to establish a contact with

the wall, in order to increase the set of support contacts and

to restore the balance. An overview of the motion is given in

Fig. 14. Three tasks of type (47) are used: one task on the chest,

which controls only the translation; another one on each gripper

controls both the translation and the rotation. The COM is not

explicitly controlled. The sequence of tasks and contacts is given

in Fig. 15.

2) Results: The experiment is summarized in Figs. 14–18. If

using only quasi-static movements (i.e., reaching while keeping

the COM inside the feet support polygon), themaximal reaching

distance of HRP-2 is around 85 cm. In this motion, the wall is

positioned 1 m in front of the robot, as shown in Fig. 14. The

motions of the COMalongwith the forward direction are plotted

in Fig. 16. The COM quickly leaves the support polygon in the

beginning of the motion, due to the artificial motion of the

chest. From t = 0.7 s, the COM is out of the support polygon

with a positive velocity. It is then impossible to bring it back to

stability without changing the supports. The balance is restored

after t = 2.5 s, with the COM coming back to zero velocity. The

stability is evaluated using the robustness criterion presented in

Section VI-C. When only the feet are in contact, the ZMP is

at the forward limit of the support polygon, which corresponds

to a low robustness. The robustness increases when the first

gripper enters into contact. However, at that time, the tangent

forces of the gripper on the wall are high. The robot can then

lose its balance by rotating on one of the gripper–foot edges,

as already observed in [70]. The second gripper helps us to

improve the stability by decreasing the tangent forces at each

contact point. The vertical forces are plotted in Fig. 18. On the

grippers, the vertical direction corresponds to the tangent to the

contact. Between t = 1.9 s and t = 2.5 s, the tangent forces at

the left gripper are high, at the limit of the friction cones, which

corresponds to a weaker robustness of the motion (the gripper

is close to slide).

VIII. CONCLUSION

This paper proposed a complete solution to performing task-

space (operational-space) inverse dynamics, while taking into

account various tasks, unilateral constraints, such as joint posi-

tion or torque limits, and preserving the contact stability. Com-

plex motions can be composed from several tasks, constraints,

and contacts, by ensuring a strict hierarchy between conflicting

references. Several models of unilateral contacts can be con-

sidered. The most common one is the rigid point contact. We

also proposed a reduced formulation for expressing rigid planar

contacts. The contact condition has been shown to be equiv-

alent to the ZMP-inside-the-support-polygon constraint in the

particular case of the humanoid robot standing on a flat floor. To

quantify the quality of the generated motion in terms of distance

to the contact-stability constraints, a generic criterion has been
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Fig. 14. Experiment C: Snapshots of the dynamic contact transition.
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Fig. 15. Experiment C: Sequence of tasks and contacts. On each gripper, an
intermediate point is used to ensure that the final contact motion is performed
along the normal to the wall. The contact polygons of the feet and grippers are
the same as previously.
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Fig. 16. Experiment C: Trajectory of the COM along the x-axis (forward
direction). The gray rectangle marks the limit of the foot support. The COM
starts inside the support polygon, quickly leaves it when the chest is thrown
forward, and, finally, converges to a fixed position when the grippers contact the
wall and stabilize the motion.
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Fig. 17. Experiment C: Robustness criterion (see Section VI-C). The distance
is computed with respect to the friction cones. The friction coefficient of the
gripper with the wall is set to the same value than at the sole contact.
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Fig. 18. Experiment C: Vertical forces (normal forces for the feet, tangent
forces for the gripper).

proposed that can handle the rigid slidingless point contact, the

rigid planar contact, but also friction cones.

The effectiveness of the approach has been demonstrated

by generating different motions for the humanoid HRP-2.

These motions have been generated offline because the motion-

generation algorithm is close to but still not real time. They are

fully consistent with the robot dynamics and can be replayed

directly by the robot, as was shown by making the real HRP-2

sit down in an armchair.

The future of this approach would be to apply the algorithm

directly on the robot as a closed-loop control. This would re-

quire technical contributions to accelerate the solver computa-

tion cost, but also to consider an effective dynamic sensor-based

control.

APPENDIX A

GENERALIZED INVERSE

The notationQ# denotes any reflexive generalized inverse of

Q [47], i.e., which respects the two first conditions of Moore–

Penrose

QQ#Q = Q

Q#QQ# = Q# .

In general, Q# is chosen among the possible inverses as the

one which minimizes the norm in both the task space and the

control parameter (referred to as the pseudoinverse in this paper,

and denoted by .+ ), i.e., it verifies the two second conditions of

Moore–Penrose

QQ# is symmetrical

Q#Q is symmetrical.

Alternatively, one of these two (or both) conditions can be

relaxed to impose a different metric in the task space or

on the control parameter. In particular, a weighted general-

ized inverse [46] can be chosen to impose a given minimum

R-norm in the control space ‖u‖2
R = uT Ru, where R is a

given symmetric positive-definite matrix; in that case, the in-

verse is given by Q#R =
√

R(Q
√

R)+ = RQT (QRQT )+ ,

where
√

R is any decomposition such that
√

R
T √

R = R, for

example, the Choleski decomposition. A weighted general-

ized inverse can also impose a minimum L-norm in the task

space ‖ė∗ − Qu‖2
L = (ė∗ − Qu)T L(ė∗ − Qu); in that case, it

is QL# = (
√

LQ)+
√

L = (QT LQ)+QT L. Of course, both R

andLnorms can be imposed byQL#R =
√

R(
√

LQ
√

R)+
√

L.

APPENDIX B

HIERARCHICAL QUADRATIC PROBLEM COMPLEXITY

Consider a HQP whose variable x is of dimension n and

whose constraints have the following form:Ax ≤ b. The choice

of an active set A defines an equality-only HQP (eHQP), with

fewer constraints whose form are Aix = bi , where Ai (respec-

tively, bi) are the rows of A (respectively, b) selected by A.
The eHQP solution can be computed by a set of pseudoinverses

following (2). The active-search algorithm [26], [52] uses a



heuristic to find the optimal active set, for which the eHQP

computes the optimal x. (see [26] for more details).

Basically, the eHQP routine costs o(mn2) where m is the

number of rows of the problem, which is approximately o(n3)
when the eHQP is nearly square. The active search then loops p

times. The complexity is roughly o(pn3). Because the HQP is a
continuous function of the constraints, warm start can be used to

reduce the number of active-search iterations. Experimentally,

p is equal to 1 for 99% of the control cycles and never bigger

than 10.

For inverse dynamics with q being the size of the contact

variable, the cost is o(p(2n + q − 6)3). For the reduced planar
model when only the feet are in contact, q = 20, which makes

N = 36+ 30+ 20 for the HQP variable.

APPENDIX C

PROOF OF EQUIVALENCE

The equivalence is proved between the scheme proposed in

Section IV and the control law proposed in [59].

1) Control scheme: The developments of [59] are first re-

called. The task Jacobian subject to a contact is defined by:

Jt|c = JPc
T (53)

where the subscript t|c indicates that the task quantities are pro-
jected in a contact constraints space. By left-multiplying (25) by

(Jt|c
#A−1

)T =
(
A−1Jt|c

T (Jt|cA
−1Jt|c

T )−1
)T
, the task-space

dynamic evolution is obtained

Λt|c ë + µt|c = Qt|cS
T τ (54)

with Λt|c=(Jt|cA
−1Jt|c

T )−1 , Qt|c=(Jt|c
#A−1

)T Pc , and µt|c =

Qt|cb + (Jt|c
#A−1 T

Jc
T (JcA

−1Jc
T )−1 J̇c − Λt|c J̇)q̇. The refer-

ence torques are obtained by inverting (54)

τ ∗ = ((Jt|c
#A−1

)T PcS
T )#f ∗

= J⋆T
f ∗ (55)

where J⋆ = Jt|c(SPcT ) and F = Λt|c ë + µt|c . This final equa-
tion corresponds to the standard map from the end-effector

forces f ∗ to the joint torques by the transpose of the Jacobian
of the robot.

2) Proof of equivalence: Control law (55) can be shown to

be equivalent to the control law proposed in Section IV. On the

one hand, since SP T
c is full row rank, (55) can be rewritten as

τ ∗ =(SP T
c A−1PcS

T )−1SP T
c A−1PcJ

T (JP T
c A−1PcJ

T )−1 ë∗.
(56)

On the other hand, the scheme proposed in Section IV can be

written as

τ = (JA−1PcS
T )#W ë∗ (57)

with W being a user-defined weight matrix. Developing the

weighted inverse gives [46]

τ = WSP T
c A−1JT (JA−1PcS

T WSP T
c A−1JT )−1 ë∗.

The weight is chosen as W = (SA−1PcS
T )−1 =

(SP T
c A−1PcS

T )−1 [57]. Since A−1Pc = P T
c A−1 = P T

c A−1

Pc [59], the equivalence between (56) and (57) is brought to

prove that

JA−1PcS
T (SA−1PcS

T )−1SP T
c A−1JT = (JP T

c A−1PcJ
T ).

We can recognize the term (SP T
c )#A−1

= A−1

PcS
T (SA−1PcS

T )−1 in the previous equality. It thus

reduces to

J(SP T
c )#A−1

SP T
c A−1JT = (JP T

c A−1PcJ
T ). (58)

In [59], it is proved that (SP T
c )#SP T

c = P T
c , which concludes

the proof. ¥
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