
HAL Id: hal-03271811
https://hal.inria.fr/hal-03271811

Submitted on 27 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proximal and Sparse Resolution of Constrained
Dynamic Equations

Justin Carpentier, Rohan Budhiraja, Nicolas Mansard

To cite this version:
Justin Carpentier, Rohan Budhiraja, Nicolas Mansard. Proximal and Sparse Resolution of Con-
strained Dynamic Equations. Robotics: Science and Systems 2021, Jul 2021, Austin / Virtual, United
States. �hal-03271811�

https://hal.inria.fr/hal-03271811
https://hal.archives-ouvertes.fr


Proximal and Sparse Resolution
of Constrained Dynamic Equations

Justin Carpentier
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Abstract—Control of robots with kinematic constraints like
loop-closure constraints or interactions with the environment
requires solving the underlying constrained dynamics equations
of motion. Several approaches have been proposed so far in the
literature to solve these constrained optimization problems, for
instance by either taking advantage in part of the sparsity of the
kinematic tree or by considering an explicit formulation of the
constraints in the problem resolution. Yet, not all the constraints
allow an explicit formulation and in general, approaches of the
state of the art suffer from singularity issues, especially in the
context of redundant or singular constraints. In this paper, we
propose a unified approach to solve forward dynamics equations
involving constraints in an efficient, generic and robust manner.
To this aim, we first (i) propose a proximal formulation of the
constrained dynamics which converges to an optimal solution
in the least-square sense even in the presence of singularities.
Based on this proximal formulation, we introduce (ii) a sparse
Cholesky factorization of the underlying Karush–Kuhn–Tucker
matrix related to the constrained dynamics, which exploits at
best the sparsity of the kinematic structure of the robot. We also
show (iii) that it is possible to extract from this factorization the
Cholesky decomposition associated to the so-called Operational
Space Inertia Matrix, inherent to task-based control frameworks
or physic simulations. These new formulation and factorization,
implemented within the Pinocchio library, are benchmark on
various robotic platforms, ranging from classic robotic arms or
quadrupeds to humanoid robots with closed kinematic chains,
and show how they significantly outperform alternative solutions
of the state of the art by a factor 2 or more.

I. INTRODUCTION

As soon as a robot makes contacts with the world or is
endowed with loop closures in its design, its dynamics is
governed by the constrained equations of motion. From a
phenomenological point of view, these equations of motion
follow the so-called least-action principle, also known under
the name of the Maupertuis principle which dates back to
the 17th century. This principle states that the motion of
the system follows the closest possible acceleration to the
free-falling acceleration (in the sense of the kinetic metric)
which fulfils the constraints. In other words, solving the
constrained equations of motion boils down to solving a
constrained optimization problem where forces acts as the
Lagrange multipliers of the motion constraints.

This principle has been exploited by our community since
the seminal work of Barraf [1], which is here our main
source of inspiration. He initially proposed to formulate the

Fig. 1. Robotic systems may be subject to different types of constraints: point
contact constraints (quadrupeds), flat foot constraints (humanoids), closed
kinematic chains (parallel robots, here the 4-bar linkages of Cassie) or even
contact with the end effectors (any robot). Each colored ”anchor” here shows
a possible kinematic constraint applied on the dynamics of the robot. In this
paper, we introduce a generic approach to handle all these types of constraints,
contacts and kinematic closures, in a unified and efficient manner, even in the
context of ill-posed or singular cases.

dynamics with maximal coordinates (i.e. each rigid body
is represented by its 6 coordinates of motion) as a sparse
constrained optimization problem, and proposed an algorithm
to solve it in linear time. While maximal coordinates are inter-
esting for their versatility and largely used in simulation [2],
working directly in the configuration space with generalized
coordinates presents several advantages [16] that we propose
to exploit in this paper.

Some constraints can be put under an explicit form, i.e.
there exists a reduced parametrization of the configuration
that is free of constraints. This is often the case for classical
kinematic closures [37, 16]. Yet explicit formulation is not
always possible, and in particular is not possible for the
common case of contact constraints [42]. We address here
the more generic case where the constraints are written under
an implicit form i.e. the configuration should nullify a set
of equations, which makes it possible to handle any kind of
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design or contact constraints, or both together (see Fig. 1).
While recursive formulation exists and are predominant

for unconstrained dynamics (both inverse [40, 35] and for-
ward [13]) and for decomposing and inverting the joint-
space inertia matrix (JSIM) [14], little effort seems to have
been put in formulating a recursive algorithm in reduced
coordinates for the constrained dynamics. Yet the constrained
system is directly inverted in several trajectory-optimization
implementation. In [6], the constrained dynamics is explicitly
solved in the context of trajectory optimization. In [24], a
hierarchical trajectory optimization is also inverting directly
the constrained system with real-time applications. In [33],
a similar approach is used and extended to account for
constrained impact dynamics and switching constraints.

In [1], the links between the constrained optimization for-
mulation and the so-called operational-space inertia matrix
(OSIM) are also exhibited. OSIM is essential in many formu-
lation of inverse-dynamics based robot control [28, 42, 38].
Several algorithms have proposed recursive formulations to
compute this matrix efficiently [34, 45].

In this paper, we use the connection between constrained
dynamics and OSIM to propose a recursive algorithm for
tackling both simultaneously and in an efficient way. We
extend the existing sparse Cholesky decomposition of the
JSIM [16] to compute together the decomposition of the OSIM
and the decomposition of the ”KKT” linear system arising
from the constrained dynamics. We then take advantage of
classical methods of constrained optimization to best solve
this linear system. In particular, we explain how proximal
optimization is suitable in this case, both for its ability to
handle ill-conditioned problems (which arise near singularity
or in the case of redundant constraints) and its efficiency to
converge to accurate situation.

The remainder of this paper is organized as follows. In
Sec. II, we first introduce the notations and the standard ap-
proaches for solving constrained dynamics problem in robotics
as well as the notions of proximal operators, at the core of the
proposed approach. We then present in Sec. III the proximal
reformulation of the constrained dynamics problem. Based on
this proximal reformulation, we show in Sec. IV how the
branch-induced sparsity of the robot kinematic structure can
be exploited. This sparsity can be used to sensibly reduce
the overall computational complexity for solving constrained
dynamics problems. We benchmark the proposed approach
in Sec. V and showcase its application on standard robotics
problems. Sec. VI concludes the paper.

II. BACKGROUND

In this section, we first review the concepts of constrained
dynamics and proximal algorithms which are at the core of the
contributions and introduce the main notations subsequently
employed. In this paper, we consider poly-articulated rigid
body systems, i.e. a collection of rigid bodies (also named
links) connected by joints and which form a kinematic struc-
ture subject to constraints. These constraints can be of various
nature: closed loop constraints (enforced by the presence of

joints which constrain the relative motion of two independent
branches of the kinematic tree), contact constrains (occurring
when a robot makes a contact with another robot or with the
surrounding environment), etc.

A. Constrained dynamics

Lagrangian dynamics. While the dynamics of rigid bodies is
well described when written in maximal coordinates [1], i.e.
by considering the position and orientation of each body and
explicitly enforcing the joint constraints, Lagrangian dynam-
ics [30] is usually preferred in robotics. It provides a compact
(minimal) formulation of the equations of motion and effi-
cient algorithms in generalized coordinates. Such algorithms
are also called rigid-body dynamics algorithms [16] in the
literature, and have been introduced in order to exploit at best
the sparsity of both the system kinematics and the underlying
spatial operations. For a given poly-articulated system, the
Lagrangian dynamics reads as follows:

M(q)v̇ + c(q,v) + g(q)︸ ︷︷ ︸
b(q,v)

= τ , (1)

where q ∈ Q ' Rnq , v ∈ TqQ ' Rnv and τ ∈ T ∗q Q ' Rnv
are respectively the joint configuration vector, the joint velocity
vector and the joint torque vector, while Q is the joint
configuration space, TqQ and T ∗q Q are the tangent and the
dual tangent spaces of Q respectively1. v̇ is the time derivative
of v and corresponds to the joint acceleration vector. M(q)
stands for the joint space inertia matrix (JSIM), c(q,v) denotes
the Coriolis and centrifugal effects and g(q) is the generalized
gravity vector. We will drop the dependencies to q and v in
the rest of the paper for brevity.

Constrained dynamics. As we discussed in the introduction,
the system dynamics obeys the least-action principle when
subject to constraints. This stipulates that the acceleration of
the constrained system is the closest to the free acceleration
of the system according to the kinetic metric, while satisfying
the constraints. Mathematically, this principle reads:

min
v̇

1

2
‖v̇ − v̇free(q,v, τ )‖2M (2a)

subject to fc(q) = 0, (2b)

where v̇free(q,v, τ )
def
= M−1 (τ − b) is the free acceleration

of the system without constraint, ‖x‖M =
√
xtMx is the

kinetic metric and fc : Q → Rm is the implicit constraint
function of dimension m. In order to solve (2) in v̇, one needs
to derive (2b) twice with respect to time in order to make the

1It is important to notice that joint configuration, velocity and torque vectors
may be of different dimensions, depending on the nature of the joints. For
instance, in the presence of a free-floating joint, its configuration vector is
typically represented by the stack of one 3d vector for the translation and
one 4d vector representing the orientation as a quaternion (nq = 7), while
the joint velocity corresponds to the concatenation of a linear velocity and an
angular velocity vectors (nv = 6).



constraint explicitly dependant of v̇, which gives us:

min
v̇

1

2
‖v̇ − v̇free‖2M (3a)

subject to Jfc(q)v̇ + J̇fc(q,v)v︸ ︷︷ ︸
γfc (q,v)

= a∗c , (3b)

where Jfc(q) ∈ Rm×nv is the Jacobian of the constraint fc
and γfc(q,v) is the acceleration drift. We also introduce the
term a∗c in (3b) to account for a desired constraint acceleration,
which might include for instance some corrective terms when
the constraint (2b) is not fully satisfied (for example, the
Baumgarte stabilization method [18].) It is worth mentioning
at this stage that the proposed analysis also generalises to
non-holonomic constraints, i.e. constraints which also exhibit
a dependency in v.

Lagrangian of the constrained dynamics. Problem (3) cor-
responds to an equality-constrained quadratic program. The
associated Lagrangian equation is:

L(v̇,λ) =
1

2
‖v̇ − v̇free‖2M + λt (Jfc v̇ + γfc − a∗c) , (4)

where λ ∈ Rm corresponds to the Lagrange multipliers
associated to the constraint (3b). The solution of the equality-
constrained problem (3) is given by the following minmax
problem:

(v̇∗,λ∗) = arg min
v̇

max
λ

L(v̇,λ). (5)

Its solution can be derived from the so-called Lagrange
optimality conditions, corresponding to the notion of saddle
points [3] where the gradients ∇v̇L and ∇λL should be
both equal to zero. The solution of these first-order necessary
conditions are given by the system of equations:[

0m×m Jfc
J tfc M

]
︸ ︷︷ ︸

K(q)

[
λ
v̇

]
=

[
−γfc + a∗c
M v̇free

]
, (6)

where K(q) is the so-called Karush–Kuhn–Tucker (KKT)
matrix. The blocks of the left-hand side are ordered in the
opposite way to what can be found in the literature. This
particular choice is going to be key for the decomposition
we are proposing in Sec. IV. Assuming that M is always
positive definite – as is the case for all physical systems,
due to their strictly positive mass distribution – this system
of equations (6) may have zero, one or an infinite number of
solutions, depending on the rank of the constraint Jacobian
Jfc and whether −γfc +a∗c lies in the range-space of Jfc . For
symmetric positive definite M , the solutions of (6) are given
by:

v̇ = v̇free −M−1J tfcλ, (7)

and:
JfcM

−1J tfc︸ ︷︷ ︸
Λ−1(q)

λ = Jfc v̇free + γfc︸ ︷︷ ︸
ac,free(q,v,τ )

− a∗c , (8)

where ac,free(q,v, τ ) is the acceleration of the free dynamics
in the space of the constraint and Λ−1(q) is the so-called

inverse operational space inertia matrix (OSIM) [28], also
named in other communities the Delassus matrix [12].

Standard resolution of saddle-point problems. When Jfc is
rank deficient, which is the case in the context of redundant
contacts or when a robot reaches a kinematic singularity,
K(q) does not admit an inverse and the problem is said to
be ill-posed. Advanced numerical methods such as null-space
projection, Schur complement, iterative or Krylov subspace
methods [3] are then needed to approximately solve (6). Yet,
while being very generic, these common strategies cannot
exploit the underlying sparsity of the robot kinematics and
may require a large number of iterations before converging to
a feasible solution for a given tolerance. In Sec. III, we instead
propose a proximal reformulation of (4) which is both efficient
and robust to singularity or rank deficiency issues of the
constraint Jacobian. This proximal reformulation enables us
to introduce a relaxed version of (6) which is guaranteed [41]
to converge to the optimal solution (if it exists) within a few
iterations.

In [15], Featherstone proposed to leverage the sparse
Cholesky factorization of the joint space inertia matrix [14]
to solve (3). By writing M = UU t, (with U a sparse
upper triangular matrix with a sparsity structure induced by
the kinematic tree), the overall idea is to sparsely compute
Λ−1 as the product of two rectangular matrices AtA with
A = U−1J tfc ∈ Rnv×m. He then exploits a dense Cholesky
factorization of Λ−1 to solve (8) and finally retrieve v̇ from (7).
While this approach is generic and efficient, it does not handle
the aforementioned singular or redundant cases. To overcome
these limitations, based on the proximal resolution of the
constrained dynamics, we introduce in Sec. IV an efficient
algorithm to compute the sparse Cholesky factorization of the
KKT matrix K which efficiently exploits the sparsity induced
by the kinematic tree. We also show how this decomposition
is connected to the Cholesky factorization of Λ−1.

B. Proximal algorithms

In convex optimization, proximal algorithms [41] are a
broad class of optimization techniques to find the optimum
of convex functions, potentially non-smooth.

Proximal operators. Proximal algorithms are naturally built
on the notion of proximal operators, defined for a proper
and lower semi-continuous convex function f : X → R ∪
[−∞; +∞] as:

proxf,α(y)
def
= arg min

x∈X
f(x) +

1

2α
‖x− y‖22, (9)

where α ∈ R+∗ can be assimilated to a step-size. In terms of
interpretation, the additional term 1

2α‖x−y‖
2
2 acts as a smooth-

ing of the function f , transforming the initial minimization
problem over f into a strongly convex problem. In addition,
many functions (typically norm functions) admit closed-form
solutions for their proximal operator, while directly solving
arg minx f(x) is potentially hard or even impossible. Proxi-
mal algorithms typically iterate over the proximal operators,



following the recursion:

xk+1 = proxf,α(xk), (10)

until a given convergence criteria or a certain number of
iterations are reached. In general, this results in a cascade of
simpler problems to solve, at the price of possibly requiring
a large number of iterations before converging to the solution
of the original problem with a desired precision.

Application to linear least-square problems. A typical
application of proximal algorithms is for linear least-square
regressions, when one seeks x ∈ Rn which best explains the
system of equations Ax = b in the least-square sense, where
b ∈ Rm and A ∈ Rm×n is possibly rank deficient:

x∗ = arg min
x∈Rn

1

2
‖Ax− b‖22 (11)

where f(x) = 1
2‖Ax−b‖

2
2. A standard approach for computing

the least-square solution goes through the calculation of the
generalized inverse of A, denoted A†, resulting in: x∗ = A†b.
The computation of this generalized inverse in turn requires
to manually select a certain threshold associated with the
smallest singular value of A. This impacts the quality of
the solution, especially in the context of ill-posed problems.
Instead, proximal algorithms do not require such choice of
threshold and iterate over an always well-posed problem and
converges to the optimal solution of the original problem [41].
The proximal operator associated to the least-square problem
reads:

proxf,α(xk) = arg min
x

1

2
‖Ax− b‖22 +

1

2α
‖x− xk‖22, (12)

and admits an analytical solution of the form:

xk+1 = proxf,α(xk) =

(
AtA+

1

α
In

)−1(
Atb+

1

α
xk

)
,

(13)
where In is the identity matrix of dimension n. It appears
then for α > 0, the matrix AtA + 1

αIn is always symmetric
and positive definite. The iterative procedure only requires
one matrix inversion or factorization (typically, a Cholesky
decomposition), and one can show that it converges to the
optimal solution at a linear rate with respect to α [41]. A
typical stopping criteria is given by ‖At (Axk − b) ‖∞ < ε,
where ε corresponds to a desired accuracy in terms of op-
timality of the current solution xk. In practice, for most
classical optimization problems in robotics, only a dozen
of iterations are really needed to find an optimal solution
with sufficient accuracy, a typical value for ε being 10−8. In
addition, proximal algorithms offer the ability of being easily
warm-started, and in the context of linear problems, they can
be assimilated to an iterative-refinement procedure. It is also
worth noticing that, in the case where xk = 0n, Eq. (12)
reduces to the so-called Tikhonov regularization method.

III. PROXIMAL RESOLUTION OF CONSTRAINED DYNAMIC
EQUATIONS

In this section, we show how the application of the proximal
operator over the dual variables of the constrained dynamics

Lagrangian (4) lead to a well-posed iterative optimization
process, converging to the optimal solution of (3), even in
the presence of singular or redundant constraints, and show
how it differs from the classic augmented Lagrangian method.

A. The augmented Lagrangian approach

A classic approach for solving equality-constrained
quadratic program is the augmented Lagrangian method
(ALM) [43]. ALM consists of augmenting the Lagrangian
function (4) with a L2 penalization of the linear con-
straint (3b). In the context of the constrained dynamics (3),
this augmentation reads:

LA(v̇,λ) = L(v̇,λ) +
µ

2
‖Jfc v̇ + γfc − a∗c‖22, (14)

where µ is a positive penalty parameter. In order to find
the saddle-point problem associated to (14), ALM alternates
between the minimization of LA(v̇,λ) with respect to the
primal variable v̇:

v̇k+1 =
(
M + µJ tfcJfc

)−1
(M v̇free

− J tfc (λk + µ(γfc − a∗c))) (15)

and the classic rule to update the multipliers:

λk+1 = λk + µ (Jfc v̇k+1 + γfc − a∗c) . (16)

This optimization scheme has been proven to converge with a
rate of convergence directly related to the value of µ [4]. In
the context of equality-constrained quadratic program, the rate
of converge is linear in µ, also meaning that large values of µ
will decrease the actual number of iterations needed to reach
a desired precision. Yet, in the context of classic ALM, the
value of µ also affects the conditioning of M+µJ tfcJfc , which
is also impacted by the condition number of J tfcJfc , being
potentially high in the context of singular or over-constrained
problems. From a numerical point of view, this behavior will
limit the applicability of the approach for these aforementioned
cases.

B. The proximal Lagrangian

An alternative solution to ALM consists of using a proximal
reformulation of the minmax problem associated with the
constrained problem Lagrangian (4), leading to:

proxL,µ−1(v̇k,λk) = arg min
v̇

max
λ

L(v̇,λ)− µ

2
‖λ− λk‖22,

(17)
where λk is the current estimate of the multipliers2. We could
have also introduced a proximal term associated to the primal
variable v̇, but this is not required, as M is already a strictly
symmetric positive-definite matrix, hence 1

2‖v̇ − v̇free‖2M is
strictly convex. Solving the saddle-point problem associated
with (17) leads to the primal/dual system of equations:[

−µIm Jfc
J tfc M

]
︸ ︷︷ ︸

Kµ(q)

[
λ
v̇

]
=

[
−γfc + a∗c − µλk

M v̇free

]
. (18)
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Fig. 2. Converge rate of the primal-dual proximal formulation for different
values of µ for typical equality-constrained quadratic program. The conver-
gence rate is linear in µ as suggested by the theory [41] and the convergence
rate is inversely proportional to the value of µ.

Contrary to (6), here Kµ(q) is always nonsingular, thanks
to the presence of the nondegenerated top-left corner block. It
should be noted that this is similar to the case of the afore-
mentioned linear least-square proximal resolution. In turn,
the regularized KKT matrix Kµ(q) makes the problem (18)
always well-posed, defined by a unique solution. In addition,
we recover in Kµ(q) the Hessians associated to the saddle-
point of the constrained optimization problem (3). M , which
is strictly positive-definite, is related to the primal variables
and −µIm, which is strictly negative-definite for µ > 0, is
related to the dual variables. It is also worth mentioning that,
when µ goes to 0, one retrieves the original KKT problem (6),
likely ill-posed.

In the end, iterating over (17) with a constant
penalty factor µ > 0, by following the update rule
(v̇k+1,λk+1) = proxL,µ−1(v̇k,λk), converges to the optimal
solution of (3). In practice, the proposed approach only
requires very few iterations to converge to a tolerance closed
to the machine precision [41], as seen in Fig. 2. Indeed,
and contrary to the classic augmented Lagrangian approach
previously described, the conditioning of Kµ is in overall
improved, enforcing the numerical stability of the proposed
approach, at the price of solving a system of equations of
larger dimension. Besides, while the inverse of Kµ exhibits
an analytical formula of the form:

K−1
µ (q) =

[
−Λµ ΛµJfcM

−1

M−1J tfcΛµ M−1 −M−1J tfcΛµJfcM
−1

]
,

(19)
with:

Λµ(q)
def
=
(
JfcM

−1J tfc + µIm
)−1

(20)

corresponding to the damped OSIM, it is costly to evaluate
in general. Indeed, it requires several matrix inversions: one
to compute the damped OSIM matrix Λµ, and another one
to get the the joint space inertia matrix inverse M−1, even
though efficient algorithms have been proposed so far [25, 7].
To overcome these computational limitations, we propose to
leverage the branch-induced sparsity of Kµ by deriving in the
next section new rigid body dynamic algorithms to compute its

2The ’−’ term appearing in front of ‖λ − λk‖22 comes from the maxi-
mization of the Lagrangian (4) with respect to the dual variable λ.
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Fig. 3. Illustration of kinematic chain equipped with a closed loop. The
whole kinematic chain can be represented by a tree where bodies correspond
to nodes and the joints to the arcs connections two nodes. In this work, the
closed-loop constraints are considered as implicit constraints and are solved
using the formulation proposed in Sec. III.

sparse Cholesky decomposition and perform the related sparse
matrix operations.

IV. SPARSE CHOLESKY FACTORIZATION

Rigid body dynamics algorithms [16] is popular in robotics
for their ability to exploit at best the branch-induced sparsity of
robot kinematic trees, and their simplicity in terms of software
implementation. This has resulted in many efficient and open-
source frameworks rooted on these algorithms [39, 17, 10, 29].
The exploitation of sparsity is particularly interesting and
important when computing the JSIM, with many efficient
algorithms to compute it [16], among which, the composite
rigid body algorithm (CRBA) appears to be the one with the
lowest computational complexity.

Additionally, some contexts may require the computation of
the JSIM inverse M−1 in addition to the value of the JSIM
M itself (like task-space inverse dynamics or robot simulation
to name a few). In [14], Featherstone suggested to leverage
the already computed JSIM in order to retrieve an expression
of its inverse through its Cholesky factorization. He notably
introduced several algorithms to compute this decomposition
and to perform the related matrix-vector operations, while
exploiting at best the induced sparsity. In this section, we
extend the Featherstone algorithms and introduce a generic
approach to compute the Cholesky decomposition of Kµ and
to perform the related matrix-vector operations.

The rest of this section is organized as follows. We first
introduce the main notations for the rigid body dynamics
algorithms and recall the Featherstone algorithms to decom-
pose the JSIM. We then introduce the Cholesky decomposition
of Kµ and present the related algorithms. We conclude this
section by showing the connection of the newly introduced
decomposition and discuss potential generalization of the
proposed approach.

A. Kinematic structure and notations

Whether a robot holds or not loop-constraints in its mech-
anism, its joint structure can always be depicted by an open
kinematic tree, on top of which loop constraints apply if exist.
Fig. 1 depicts robots with different kinematic structures, where



bodies are represented by nodes and the joints correspond to
the arcs connecting two nodes, as illustrated in Fig. 3. The
connectivity of this kinematic tree can be described by a set
p of positive indexes which relates a body index i to the
index of its body parent p(i) inside the kinematic tree. The
indexes in p follow a regular numbering scheme, meaning that
∀ i, 0 ≤ p(i) < i, the 0 index referring to the root body. In
the case where the robot is made of a unique serial chain, we
have the special property that p(i) = i − 1. In addition, we
denote by s(i) the set of of bodies supported by the body i
(aka the descendant of i), including the index of body i itself.

In the case where the kinematic tree contains joints with
several DoFs, one needs to consider an extended set of indexes
for both parent set p and support sets s(i) used by the matrix
factorization algorithms, as discussed in details in [14, 16].
Hereafter, in order to simplify the explanations and without
loss of generality, we assume that the kinematic tree is only
composed of single DoF joints. We consider a kinematic
tree made of N bodies and joints, and the loop joints are
considered as constraints and handled as geometric constraints
as proposed in Sec. III. In particular, for single DoF joints, we
have N = nv . The implementation of our method, reported
in Sec. V, is done with the more general case enabling multi-
DOF joints.

B. Sparse Cholesky factorization of the JSIM

The Cholesky factorization of the JSIM is given by M =
UDU t, with U an upper triangular matrix with ones on its
main diagonal and D a diagonal matrix made of positive
elements. From this decomposition, one can retrieve an ex-
pression of the JSIM inverse as M−1 = U−tD−1U−1. To
compute U , it is worthwhile to analyze first the sparsity pattern
of the JSIM for a branched kinematic tree. The matrix entries
of the JSIM are given by the following formula:

Mi,j =


StiI

c
i Sj if j ∈ s(i)

StjI
c
jSi if i ∈ s(j)

0 otherwise,
(21)

where Si ∈ R6 is the joint motion axis and Ici is the composite
rigid body inertia associated to the joint i. We refer to [16]
for further details. Following (21), it appears that Mi,j = 0
whenever i and j are located on different branches, which
translates to:

i /∈ s(j) and j /∈ s(i)⇒Mi,j = Mj,i = 0. (22)

Additionally, as shown in [14], U exhibits the same sparsity
pattern as M , which is fundamental for efficient resolution of
multi-branched systems like humanoid robots. Another way to
write it down is that:

i /∈ s(j)⇒ Uj,i = 0. (23)

As observed in [14], it is important to seek for an upper
decomposition of the form M = UDU t , and not for a (more
classical) lower Cholesky decomposition M = LDLt, with L
and U respectively unitary lower and upper triangular matrices,

and D positive diagonal matrix. Indeed and following the
remarks made in [14], shaped like that, L will not exhibit
any specific pattern resulting in a dense matrix. It is also
worth mentioning that M−1, U−1, U−t or D−1 should not
be interpreted as matrix transpose or inverse, but rather as
mathematical operators acting on vectors. This is precisely
the motivation behind the now well-established rigid body
dynamics algorithms introduce in [14], that we propose to
extend in the context of constrained dynamics.

C. Sparse Cholesky factorization of Kµ

We highlight in this subsection the structure of the Cholesky
decomposition of Kµ. For that purpose, we first decompose
Kµ as the product of three related and invertible matrices as
follows:

Kµ =

[
Im JfcM

−1

0 In

] [
−Λ−1

µ 0
0 M

] [
Im 0

M−1J tfc In

]
.

We denote by (UΛ−1
µ
, DΛ−1

µ
) the Cholesky decom-

position associated to Λ−1
µ and rewrite (UΛM , DΛM )

the Cholesky decomposition associated to M , such that
Λ−1
µ = UΛ−1

µ
DΛ−1

µ
U t

Λ−1
µ

and M = UΛMDΛMU
t
ΛM

. It is now
possible to write Kµ as the product of two triangular matrices
with one diagonal matrix, following the expression:

Kµ =

UKµ︷ ︸︸ ︷[
UΛ−1

µ
JfcU

−t
ΛM

D−1
ΛM

0 UΛM

] DKµ︷ ︸︸ ︷[
−DΛ−1

µ
0

0 DΛM

]
[

U t
Λ−1
µ

0

D−1
ΛM

U−1
ΛM

J tfc U tΛM

]
︸ ︷︷ ︸

UtKµ

, (24)

expression which corresponds to nothing more than the
Cholesky decomposition of Kµ, where by construction, UKµ
is an upper triangular matrix of dimension N +m and DKµ

is a diagonal matrix of dimension N +m. We recognize in
DKµ the negative curvature in the left top block and the
positive curvature in the right bottom block, both related to
the aforementioned notion of saddle-point exposed in Sec. III.
This also means that it would have not been possible to use
a standard Cholesky decomposition of the form U tU , due to
the presence of negative values on the diagonal matrix DKµ .
Importantly, the presence of the regularization term µ in the
expression of Λµ makes the Cholesky decomposition always
well defined.

In this work, we extend the sparse algorithms introduced
in [14] to the more generic setting of constrained dynamics.
We assume that each constraint ci(q) only depends on a subset
σi of the joints composing the kinematic tree, which covers,
but not limited, bilateral contact and closed-loop constraint
types. This notably implies that the Jacobian of each constraint
ci(q), denoted by Ji, has non-zero elements only for the
columns which are related to the joints present in σi. This
statement also reads as:

j /∈ σi ⇒ Ji[:, j] = 0ni , (25)



where ni is the size of the constraint ci and Ji[:, j] denotes the
jth column of the Jacobian matrix Ji. In particular, the total
size of the constraint vector is given by m =

∑
i ni.

Similarly to the Cholesky decomposition of the JSIM alone,
the Cholesky decomposition of the KKT matrix Kµ exhibits a
structured sparsity pattern associated to the JSIM. This reads:

i /∈ s(j)⇒ UKµ [j +m, i+m] = 0, (26)

where we need to add to the joint indexes the total size of
the constraints to correctly capture the dimensions of Kµ.
In addition, according to the properties (23) and (25), Kµ

also exhibits a structure sparsity pattern associated to the
constraints. If we denote by ri the indexes of the rows
associated to the constraint ci in UKµ , this pattern follows
the rule:

j /∈ σi ⇒ UKµ [ri, j +m] = 0ni . (27)

In other words, if a joint does not contribute to a constraint ci,
then the related block in UKµ will be zero. Finally, the only
non-structured part of UKµ is its upper left triangular block of
dimension m×m, totally dense in most standard cases [1].

D. Rigid body algorithms associated to (UKµ , DKµ)

Rooted on the previous analysis, Alg. 1 summarizes the
main rigid body dynamic algorithm to compute the Cholesky
factorization of the KKT matrix Kµ = UKµDKµU

t
Kµ

. The
proposed algorithm can be performed in-place, meaning that
they will directly operate on the entries of the KKT matrix
without requiring further vector or matrix copy operations.
For clarity of presentation, the following notations are used
in Alg. 1. We denote by A the matrix Kµ on which the
Cholesky factorization operates. il stands for the index of
the first row of the ith constraint in Kµ. This pseudo-code
is very similar in spirit to the ones presented in [14]. Yet, we
chose to present the computations for a factorization exploiting
an upper triangular matrix, while Featherstone uses a lower
triangular matrix. The pass over the joints exactly corresponds
to the Cholesky decomposition of the JSIM. The other code
blocks are completely novel and related to the constraints.

Following the essence of this pseudo-code, it is possible to
directly extend it to the matrix operations U tx, Ux, U−tx
or U−1x associated to the Cholesky decomposition. We skip
their presentations to avoid overloading the paper.

E. Cholesky factorization of Λ−1
µ

Following the structure exhibited in (24), it appears that
the Cholesky decomposition of Λµ (previously denoted by
(UΛ−1

µ
, DΛ−1

µ
)) can be extracted as a side product of Alg. 1,.

UΛ−1
µ

and −DΛ−1
µ

correspond to the upper left block of
dimension m×m of UKµ and DKµ respectively. To the best
of the authors’ knowledge, this is the first time that such a
connection is made.

While this result is interesting for robot control in order to
get an expression of the OSIM, it may also impact the way
to solve complementarity problems [11] in robot simulations.
The Delassus matrix has a central role in contact simulation.

Algorithm 1 Pseudo-code of the Cholesky factorization of A
for k = N to 1 do

i = p(k)
while i > 0 do

a = Ai+m,k+m/Ak+m,k+m

j = i
Pass over the joints
while j > 0 do

Aj+m,i+m = Aj+m,i+m −Aj+m,k+m a
j = p(j)

end
Pass over the constraints
for l = nc to 1 do

if i ∈ σl
for j = ni to 1 do

Aj+il,i+m = Aj+il,i+m −Aj+il,k+m a
end

end
end
Ai+m,k+m = a
i = p(i)

end
end
Dense factorization related to the OSIM
for l = nc to 1 do

for k̃ = ni to 1 do
k = il + k̃
for i = k − 1 to 1 do

a = Ai,k/Ak,k
for j = i to 1 do

Aj,i = Aj,i −Aj,k a
end
Ai,k = a

end
end

end

It corresponds to the Hessian of the linear or nonlinear
complementarity problem [5]. Most of the current simulators
use Gauss-Seidel like algorithms [22], which are pivoting
methods and might be slow to converge, especially when Λ−1

µ

is badly conditioned. The formulation that we propose here
would enable Newton-based methods, which should be then
preferred to accelerate the converge rate of contact simulators.

F. Generality of the approach

Until now, we have only considered the case where the
matrix M at the bottom right corner of Kµ in (18) corresponds
to the JSIM. Similarly to the factorization introduced in [14],
it is worth mentioning that the proposed approach is not
limited to this particular case but can be generalized to
any symmetric positive-definite matrix satisfying the regular
numbering scheme and the property defined by (22).

For example, this includes the particular case where M is
a diagonal matrix made of positive elements, which occurs in
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Fig. 4. UR5 Benchmarks [27]: Our formulation is even able to improve the
computational timings for a small dimension (6 DoF) manipulator.

many optimization setups in robotics like inverse kinematics
or inverse geometry. In that cases the optimization routines
need to iteratively solve problems similar to (6), especially in
the context of augmented Lagrangian or sequential quadratic
programming methods. These setups should in turn benefit
from the proposed generic decomposition to significantly
accelerate their internal computations, as shown in the case
of forward dynamics in the next section.

V. RESULTS

We implemented in C++ both the sparse Cholesky fac-
torization from Sec. IV and the corresponding constrained
dynamics formulation within the Pinocchio library [9, 10].
Comparison of our implementation with the state of the art
highlights the benefits of the proposed proximal formulation
of the constrained dynamics and the exploitation of the branch-
induced sparsity. We benchmark our implementation for multi-
ple robots with different dimensions, kinematic structures, and
type of constraints. Additionally, we show the results of our
constrained dynamics implementation to simulate the motion
of different robots3. Additional results are also depicted in the
companion video.

A. Benchmark specifications

We use two metrics to demonstrate the performance of our
algorithm against state-of-the-art implementations currently
available in the community: Time taken for the Cholesky
decomposition of the relaxed KKT matrix Kµ(q), and the time
taken for solution of the constrained dynamics (6).

All our benchmarking results were obtained on a
single thread of Intel(R) Core(TM) i7-7820HQ @
2.90GHz CPU running Ubuntu 16.04. The average and
the standard deviation of our computation timings were
obtained from a dataset of 105 trials. The benchmarking
was done using clock_gettime function in C++ with
CLOCK_MONOTONIC as the time source. We disabled Tur-
boBoost to reduce variability in benchmark timings. Publicly
available urdf and sdf models were used to load the robots

3The open-source C++ implementation, the exhaustive benchmarks and
the full code are the main new features in Pinocchio 3. The pre-release of
Pinocchio 3 is available under the tag 2.9.x on https://github.com/stack-of-
tasks/pinocchio
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Fig. 5. Proposed Cholesky decomposition (ours) vs Eigen sparse Cholesky
(Eigen::SimplicialLDLT) vs Eigen dense Cholesky (Eigen::LDLT)
solver: Our proposed sparse formulation exploits at best the sparsity
of the kinematic structure of a robot to compute the Cholesky de-
composition associated to the KKT matrix Kµ(q) (18). The bench-
marks show the higher performance of our sparse formulation against the
sparse (Eigen::SimplicialLDLT) and dense Cholesky decomposition
(Eigen::LDLT) of the Eigen [21] library.

in our environment. All code was compiled with Clang++
10.0, and Eigen [21] library v3.4.0-rc1.

For all benchmarks, we first compute the performance of
our formulation without any constraints (m = 0). Then
we sequentially add kinematic constraints on various joints
and bench the performance each time. For quadruped robots
(Solo [20], ANYmal [23]), 3D point contact constraints are
sequentially added to each foot, while for Bipeds (iCub [39],
Talos [44]), 6D surface contacts are added to the limbs. For
the manipulator UR5 [27], we measure the performance of our
algorithm with a) no constraints, b) one position constraint on
gripper (m = 3), and c) one position and orientation constraint
on gripper (m = 6).

B. Benchmark of the Cholesky decomposition

Fig. 4 and 5 show the mean and standard deviation of the
computation timings for our proposed sparse Cholesky factor-
ization against state-of-the-art implementations in Eigen C++
library [21]. Overall, we can note a reduction in computation
time by more than 50% for almost all robotic platforms when
compared to Eigen’s Dense Cholesky implementation. Since
we exploit the sparsity of the robot kinematics to improve the
performance, the improvement is dependent on the dimensions
of the robot and the constraints. For small dimensions, like
the serial chain UR5 manipulator [27], the improvement is
smaller. On the other hand, non-serial kinematic chains and
high dimension robotic platforms such as quadruped or biped
robots introduce more sparsity in the dynamic equations which

https://github.com/stack-of-tasks/pinocchio
https://github.com/stack-of-tasks/pinocchio
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Fig. 6. Benchmarking of the inverse of the OSIM matrix: Λ−1
µ (q) is directly

available as an output from the sparse decomposition of the KKT Matrix
Kµ(q) in Sec. IV

we can exploit. For example, Fig. 4 shows the Cholesky
decomposition timings in UR5 (6 DoF) without constraints.
The timings are improved by ∼ 45% with our sparse formula-
tion when compared with the Dense formulation from Eigen
libray [21]4. Fig. 5 shows the timings in popular quadruped
(Solo [20], ANYmal [23]) and biped(iCub [39], Talos [44])
robots. We see much higher improvements in Talos (38 DoF)
robot without constraints (∼ 74%). Overall, all the robots show
significant improvements in computation timings when the
sparse formulation introduced in Sec. IV is exploited.

C. Extracting the OSIM matrix

The extraction of the OSIM is a dense operation that does
not benefit from the sparsity of the robot kinematics. However,
the computation of these quantities becomes straight-forward
once decomposition of the KKT matrix Kµ(q) is available.
Fig. 7 and 6 show the computation timings for extracting the
OSIM and inverse of OSIM matrices after Cholesky decom-
position. We see exceedingly tiny computation times (Λµ(q)
OSIM Inverse) of ∼ 0.03µs for UR5 manipulator, and ∼ 7µs
for higher dimensional Talos robot with 24 constraints.

Computation of the inverse OSIM Λ−1
µ (q) is even cheaper,

since the Cholesky decomposition can be directly used as
discussed in Sec. IV (Talos with 24 constraints needs only 4µs
to compute Λ−1

µ (q)). Overall, after the factorization is done,
the timings depend only on the dimension of the constraints
(since it is a dense operation). As a result, the vectorization
provided by modern CPUs and supported by Eigen library
helps to improve performance for higher dimensions.

4Curiously, serial robots such as robotic arms have a full dense mass matrix
M . However, our rigid body dynamics C++ implementation still outperforms
the off-the-shelf Cholesky solvers present in Eigen. This a priori unexpected
gain is in part due to the fact that Eigen also performs a pivoting strategy when
computing the Cholesky decomposition, mostly to improve the numerical
stability of the overall factorization, which might be discarded in most robotic
applications.
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Kµ(q) in Sec. IV

0 3 6 9 12
Constraint Dimension

0

2

4

6

8

10

12

14

Co
m

pu
ta

tio
n 

Ti
m

e 
[in

 
s]

1.89 2.12 2.42
2.92

3.43
2.88

3.55
4.16

4.84
5.55

9.5

10.92
11.92

13.09
14.23CG Proposed

Proposed
Pinocchio

0 3 6 9 12
Constraint Dimension

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Co
m

pu
ta

tio
n 

Ti
m

e 
[in

 
s]

3.02 3.26 3.63 4.1 4.74.13
4.93

5.59
6.54

7.23

13.5
14.98

16.36
17.87

19.23CG Proposed
Proposed
Pinocchio

a) Solo 14 DoF [20] b) ANYmal 18 DoF [23]

0 6 12 18 24
Constraint Dimension

0

10

20

30

40

50

60

Co
m

pu
ta

tio
n 

Ti
m

e 
[in

 
s]

8.94 9.85 11.2
13.59

16.78

10.33
13.22

16.22
19.84

24.19

32.46

37.83

43.77

49.55

56.66CG Proposed
Proposed
Pinocchio

0 6 12 18 24
Constraint Dimension

0

10

20

30

40

50

60

Co
m

pu
ta

tio
n 

Ti
m

e 
[in

 
s]

9.25 10.16 11.51
13.76

16.79

11.09
14.08

17.19
21.06

25.52

35.17

40.93

47.48

53.41

61.2CG Proposed
Proposed
Pinocchio

c) iCub 35 DoF [39] d) Talos 38 DoF [44]

Fig. 8. Proposed Contact Dynamics: The benchmarks show performance
of the proposed constrained dynamics algorithm against the state-of-the-art
Pinocchio [10] C++ library for different robotic platforms.

D. Benchmarking the constrained forward dynamics

In Fig. 8, we see significant reduction with respect to the
state-of-the-art in the timings for the solution of constrained
dynamics (6), which involves the computation of the inverse of
the KKT matrix Kµ. We benchmark our algorithm against the
forwardDynamics function available in the Pinocchio [10]
library. Moreover, we use the source-code generation tools
(CppADCodegen [32]) available in the Pinocchio library to
compile binary code for sparse decomposition of all our
(robot, constraints) combinations. We see significant reduction
in the timings for constrained dynamics because of the sparse
solutions, with our formulation reducing timings by > 50% in
all robots. In addition, we see a small improvement because



Fig. 9. Cassie robot [19] simulation: Each leg of the robot has two 3D kinematic loop constraints, and line contact with the ground (implemented as 3D
constraints at heel and toe). m = 24

Fig. 10. Talos robot [44] simulation: Each limb of the robot has one 6 DoF kinematic constraint (surface contact). m = 24

Fig. 11. ANYmal robot [23] simulation: Each limb of the robot has one 3 DoF kinematic constraint (point contact). m = 12

Fig. 12. 4-bar linkage system simulation: The multibody system has one 3 DoF kinematic loop constraint. m = 3

of the binary source-code, which further optimizes over re-
dundant computations. However, this additional performance
benefit is capped because of the lack of vectorization in
binary compiled functions. In total, our sparse method and
source-code generation vastly outperform the state-of-the-art
implementation.

E. Simulation of constrained dynamics

Fig. 9, 10, 11 and 12 show the simulation of robots with
different kinematic structures and different kinematic con-
straints in motion. We do task-space inverse dynamics while
accounting for the a) kinematic constraints, and b) reference
center of mass, to compute a reference torque and joint
trajectory. For simplicity of demonstration of our contribution,
we do not add any other constraints in our simulation.

The Cassie robot (Fig.9) has loop closure constraints at the
hip and toe joints of each leg (parallelogram mechanisms).
Each foot creates a line contact with the ground, which is
implemented as two 3D constraints located at the ends of
the line segment. The redundancy of this implementation is
handled by the proximal formulation of our contact dynamics.

Each foot of the Talos robot (Fig.10) creates a surface con-
tact with the ground, which is represented as a 6D constraint
(spatial velocity). In addition, we add a 6 DoF constraint on
each gripper of the robot to fix its placement. Similarly, there

are point contact on each foot of the ANYmal robot (Fig. 11).
In addition to the robotic platforms, we add the pendulum

motion of a 4-bar linkage (Fig. 12) with one 3 DoF loop
closure constraint, which is very often used as a pedagogic
example of a closed-loop mechanism.

All these motions are available in the companion video 5.

F. Robustness of the Proximal Algorithm

We also try to investigate the behaviour of the proximal
algorithm in case of a highly redundant set of constraints. In
a Talos robot, we put 6D surface constraints on the Right
Foot, Left Foot, and the Left Hand, and then duplicate these
constraints (thus, six 6 DoF constraints, m = 36).

The setup with µ = 0 fails, as is expected in such a scenario,
while the proximal algorithm with µ > 0 is able to find a
solution. This comparison is shown in the companion video.

VI. DISCUSSIONS AND CONCLUSION

In this paper, we have proposed an original formulation to
compute the forward dynamics of a robotic system subject
to constraints. The method uses generalized coordinates and
implicit constraints, which leads both to an efficient and
generic formulation. It is able to handle various kinds of
mechanical constraints, in particular closed kinematic chains

5https://peertube.laas.fr/videos/watch/88ceab1e-2cc1-4bd1-9c9e-2be0c2c31890

https://peertube.laas.fr/videos/watch/88ceab1e-2cc1-4bd1-9c9e-2be0c2c31890


and contact constraints. The method is built on several con-
tributions. First we proposed an extension of the classical
Cholesky decomposition of the joint space inertial matrix,
which takes the constraints into account. This decomposition,
based on the simple yet key reordering of the blocks of the
KKT matrix, also reveals an elegant and efficient way of
obtaining the decomposition of the operational-space inertia
matrix, as a side effect of the main computations. It allows
us to take into account a regularization factor, that we used
to build a proximal resolution algorithm for the constrained
dynamics. The resulting algorithm then computes a robust
solution, despite ill-conditioning or near singularity, without
sacrificing computational efficiency and numerical accuracy.

We have implemented our algorithm in an efficient frame-
work, and benchmarked our contribution on several different
systems, in the presence of both contact constraints and
kinematic closed loop. The source code is available in the
library Pinocchio along with the benchmarks to enable full
reproduction of our work.

The proposed algorithm only handles bilateral constraints.
Based on this work, we are working on a complete contact
simulator able to handle unilateral constraints (i.e. friction,
sliding, unbinding) as well. We also want to propose an
efficient way of differentiating our algorithm and compute the
derivatives of the constrained dynamics, going beyond classic
derivatives of unconstrained forward or inverse dynamics [8].
This necessary for efficient use in an optimization problem,
for example for optimal control or model predictive control of
complex legged robots [6, 26, 31, 33, 36].
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