215 research outputs found

    Optimal Geometry of CMOS Voltage-Mode and Current-Mode Vertical Magnetic Hall Sensors

    Get PDF
    Four different geometries of a vertical Hall sensor are presented and studied in this paper. The current spinning technique compensates for the offset and the sensors, driven in current-mode, provide a differential signal current for a possible capacitive integration over a defined time-slot. The sensors have been fabricated using a 6-metal 0.18-μm CMOS technology and fully experimentally tested. The optimal solution will be further investigated for bendable electronics. Measurement results of the four structures over the 10 available samples show for the best geometry an offset of 41.66 ± 8 μT and a current-mode sensitivity of 9 ± 0.1 %/T. Since the figures widely change with geometry, a proper choice secures optimal performance

    Capacitor Mismatch Calibration Technique to Improve the SFDR of 14-Bit SAR ADC

    Get PDF
    This paper presents mismatch calibration technique to improve the SFDR in a 14-bit successive approximation register (SAR) analog-to-digital converter (ADC) for wearable electronics application. Behavioral Monte-Carlo simulations are applied to demonstrate the effect of the proposed method where no complex digital calibration algorithm or auxiliary calibration DAC needed. Simulation results show that with a mismatch error typical of modern technology, the SFDR is enhanced by more than 20 dB with the proposed technique for a 14-bit SAR ADC

    High-Resolution ADCs Design in Image Sensors

    Get PDF
    This paper presents design considerations for high-resolution and high-linearity ADCs for biomedical imaging ap-plications. The work discusses how to improve dynamic spec-ifications such as Spurious Free Dynamic Range (SFDR) and Signal-to-Noise-and-Distortion Ratio (SNDR) in ultra-low power and high-resolution analog-to-digital converters (ADCs) including successive approximation register (SAR) for biomedical imaging application. The results show that with broad range of mismatch error, the SFDR is enhanced by about 10 dB with the proposed performance enhancement technique, which makes it suitable for high resolution image sensors sensing systems

    High Linearity SAR ADC for Smart Sensor Applications

    Get PDF
    This paper presents capacitive array optimization technique to improve the Spurious Free Dynamic Range (SFDR) and Signal-to-Noise-and-Distortion Ratio (SNDR) of Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC) for smart sensor application. Monte Carlo simulation results show that capacitive array optimization technique proposed can make the SFDR, SNDR and (Signal-to-Noise Ratio) SNR more concentrated, which means the differences between maximum value and minimum value of SFDR, SNDR and SNR are much smaller than the conventional calibration techniques, more stable performance enhancement can be achieved, and the averaged SFDR is improved from 72.9 dB to 91.1 dB by using the capacitive array optimization method, 18.2 dB improvement of SFDR is obtained with only little expense of digital logic circuits, which makes it good choice for high resolution and high linearity smart sensing systems

    A handheld high-sensitivity micro-NMR CMOS platform with B-field stabilization for multi-type biological/chemical assays

    Get PDF
    We report a micro-nuclear magnetic resonance (NMR) system compatible with multi-type biological/chemical lab-on-a-chip assays. Unified in a handheld scale (dimension: 14 x 6 x 11 cm³, weight: 1.4 kg), the system is capable to detect<100 pM of Enterococcus faecalis derived DNA from a 2.5 μL sample. The key components are a portable magnet (0.46 T, 1.25 kg) for nucleus magnetization, a system PCB for I/O interface, an FPGA for system control, a current driver for trimming the magnetic (B) field, and a silicon chip fabricated in 0.18 μm CMOS. The latter, integrated with a current-mode vertical Hall sensor and a low-noise readout circuit, facilitates closed-loop B-field stabilization (2 mT → 0.15 mT), which otherwise fluctuates with temperature or sample displacement. Together with a dynamic-B-field transceiver with a planar coil for micro-NMR assay and thermal control, the system demonstrates: 1) selective biological target pinpointing; 2) protein state analysis; and 3) solvent-polymer dynamics, suitable for healthcare, food and colloidal applications, respectively. Compared to a commercial NMR-assay product (Bruker mq-20), this platform greatly reduces the sample consumption (120x), hardware volume (175x), and weight (96x)

    A 900 MHz, 0.9 V low-power CMOS downconversion mixer

    Get PDF
    A low-voltage, low-power mixer operating at a supply voltage of 0.9 V while consuming 4.7 mW is presented. The circuit achieves the multiplication using current mode processing. Moreover, non-conventional differential pairs that do not require current tail generators are utilized. The circuit has been fabricated in a standard double-poly, triple-metal 0.35 /spl mu/m CMOS process having a threshold voltage of 0.6 V. Measurement results for 900 MHz and 800 MHz input signals indicate that the circuit has an IIP3 of 3.5 dBm, a 1 dB compression point of -8 dBm and a noise figure of 13.5 dB.peer-reviewe

    CMOS Vertical Hall Magnetic Sensors on Flexible Substrate

    Full text link

    On the design of single-inductor multiple-output DC-DC buck converters

    Full text link
    Abstract – Design techniques for single inductor multiple output (SIMO) DC-DC buck converters are presented. The suitable control of a multiple feedback loop enables the sharing of a single inductor with many outputs with a good stability and limited cross regulation. The method has been verified with simulations at the behavioural and transistor level to obtain four independent regulated output voltages ranging from 0 V to 1 V below the power supply voltage. The use of a suitable analog processing of errors allows obtaining a power efficiency as high as 86%. I

    An Energy-Efficient Bridge-to-Digital Converter for Implantable Pressure Monitoring Systems

    Get PDF
    This paper presents an energy-efficient, duty-cycled, and spinning excitation bridge-to-digital converter (BDC) designed for implantable pressure sensing systems. The circuit provides the measure of the pulmonary artery pressure that is particularly relevant for the monitoring of heart failure and pulmonary hypertension patients. The BDC is made of a piezoresistive pressure sensor and a readout integrated circuit (IC) that comprises an instrumentation amplifier (IA) followed by an analog-to-digital converter (ADC). The proposed design spins both the bridge excitation and the ADC’s sampling input voltages simultaneously and exploits duty cycling to reduce the static power consumption of the bridge sensor and IA while cancelling the IA’s offset and 1/f noise at the same time. The readout IC has been designed and fabricated in a standard 180-nm CMOS process and achieves 8.4 effective number of bits (ENOB) at 1 kHz sampling rate while drawing 0.53 µA current from a 1.2 V supply. The BDC, built with the readout IC and a differential pressure sensor having 5 kΩ bridge resistances, achieves 0.44 mmHg resolution in a 270 mmHg pressure range at 1 ms conversion time. The current consumption of the bridge sensor by employing duty cycling is reduced by 99.8% thus becoming 0.39 µA from a 1.2 V supply. The total conversion energy of the pressure sensing system is 1.1 nJ, and achieves a figure-of-merit (FoM) of 3.3 pJ/conversion, which both represent the state of the art
    corecore