16 research outputs found

    Sharing of general loading in double glazed units. The BAM analytical approach

    Get PDF
    Double Glazed Units (DGUs) consist of two glass panes held together by structural edge seals. Calculation methods for DGUs consider that actions applied on one pane develop effects in all the panes, due to the coupling from the entrapped gas. Various methods have been proposed in standards to evaluate this load sharing, which depends upon the stiffness of the glass panes, the thicknesses of spacer and the size of the DGU. A comprehensive analytical formulation, the Betti’s Analytical Method (BAM), has been recently proposed to calculate the load sharing in DGUs of any shape, composed by glass panes of arbitrary thickness, with various support conditions at the borders and various types of external actions, including concentrated and line loads. Simple expressions can determine the gas pressure as a function of a universal shape function, which coincides with the deformed surface of a simply supported plate, of the same shape of the DGU, under uniformly distributed load. Here, comparisons are made with numerical analyses, performed by implementing an ad hoc routine in the software Straus7, developed by Maffeis Engineering, where the deflection of the glass panels is iteratively calculated, until the volume enclosed reaches a value compatible with the pressure exerted by the gas. The numerical routine, that is part of an integrated parametric approach to the façades design, allows precise calculations for any kind of build-up, panel shapes and load conditions

    Automated Analysis of Proliferating Cells Spatial Organisation Predicts Prognosis in Lung Neuroendocrine Neoplasms

    Get PDF
    SIMPLE SUMMARY: Lung neuroendocrine neoplasms (lung NENs) are categorised by morphology, defining a classification sometimes unable to reflect ultimate clinical outcome, particularly for the intermediate domains of adenocarcinomas and large-cell neuroendocrine carcinomas. Moreover, subjectivity and poor reproducibility characterise diagnosis and prognosis assessment of all NENs. The aim of this study was to design and evaluate an objective and reproducible approach to the grading of lung NENs, potentially extendable to other NENs, by exploring a completely new perspective of interpreting the well-recognised proliferation marker Ki-67. We designed an automated pipeline to harvest quantitative information from the spatial distribution of Ki-67-positive cells, analysing its heterogeneity in the entire extent of tumour tissue—which currently represents the main weakness of Ki-67—and employed machine learning techniques to predict prognosis based on this information. Demonstrating the efficacy of the proposed framework would hint at a possible path for the future of grading and classification of NENs. ABSTRACT: Lung neuroendocrine neoplasms (lung NENs) are categorised by morphology, defining a classification sometimes unable to reflect ultimate clinical outcome. Subjectivity and poor reproducibility characterise diagnosis and prognosis assessment of all NENs. Here, we propose a machine learning framework for tumour prognosis assessment based on a quantitative, automated and repeatable evaluation of the spatial distribution of cells immunohistochemically positive for the proliferation marker Ki-67, performed on the entire extent of high-resolution whole slide images. Combining features from the fields of graph theory, fractality analysis, stochastic geometry and information theory, we describe the topology of replicating cells and predict prognosis in a histology-independent way. We demonstrate how our approach outperforms the well-recognised prognostic role of Ki-67 Labelling Index on a multi-centre dataset comprising the most controversial lung NENs. Moreover, we show that our system identifies arrangement patterns in the cells positive for Ki-67 that appear independently of tumour subtyping. Strikingly, the subset of these features whose presence is also independent of the value of the Labelling Index and the density of Ki-67-positive cells prove to be especially relevant in discerning prognostic classes. These findings disclose a possible path for the future of grading and classification of NENs

    Educational Intervention of Healthy Life Promotion for Children with a Migrant Background or at Socioeconomic Disadvantage in the North of Italy: Efficacy of Telematic Tools in Improving Nutritional and Physical Activity Knowledge

    No full text
    The aim of the "Smuovi La Salute " ( "Shake Your Health ") project was to implement an integrated and comprehensive model to prevent and treat overweight and obesity in low socioeconomic status (SES) and minority groups living in three different districts in the north of Italy. An app and a cookbook promoting transcultural nutrition and a healthy lifestyle were developed, and no-cost physical activities were organized. Healthy lifestyle teaching was implemented in 30 primary school classrooms. Learning was assessed through pre- and post-intervention questionnaires. At the Obesity Pediatric Clinic, overweight and obese children of migrant background or low SES were trained on transcultural nutrition and invited to participate in the project. Primary school students increased their knowledge about healthy nutrition and the importance of physical activity (p-value < 0.001). At the Obesity Pediatric Clinic, after 6 months, pre-post-intervention variation in their consumption of vegetables and fruit was +14% (p < 0.0001) and no variation in physical activity habits occurred (p = 0.34). In this group, the BMI z-score was not significantly decreased (-0.17 & PLUSMN; 0.63, p= 0.15). This study demonstrates the feasibility and efficacy of telematic tools and targeted community approaches in improving students' knowledge with regard to healthy lifestyle, particularly in schools in suburbs with a high density of migrants and SES families. Comprehensive and integrated approaches provided to the obese patients remain mostly ineffective
    corecore