27 research outputs found

    On the assimilation of SWOT type data into 2D shallow-water models

    Get PDF
    In river hydraulics, assimilation of water level measurements at gauging stations is well controlled, while assimilation of images is still delicate. In the present talk, we address the richness of satellite mapped information to constrain a 2D shallow-water model, but also related difficulties. 2D shallow models may be necessary for small scale modelling in particular for low-water and flood plain flows. Since in both cases, the dynamics of the wet dry front is essential, one has to elaborate robust and accurate solvers. In this contribution we introduce robust second order, stable finite volume scheme [CoMaMoViDaLa]. Comparisons of real like tests cases with more classical solvers highlight the importance of an accurate flood plain modelling. A preliminary inverse study is presented in a flood plain flow case, [LaMo] [HoLaMoPu]. As a first step, a 0th order data processing model improves observation operator and produces more reliable water level derived from rough measurements [PuRa]. Then, both model and flow behaviours can be better understood thanks to variational sensitivities based on a gradient computation and adjoint equations. It can reveal several difficulties that a model designer has to tackle. Next, a 4D-Var data assimilation algorithm used with spatialized data leads to improved model calibration and potentially leads to identify river discharges. All the algorithms are implemented into DassFlow software (Fortran, MPI, adjoint) [Da]. All these results and experiments (accurate wet-dry front dynamics, sensitivities analysis, identification of discharges and calibration of model) are currently performed in view to use data from the future SWOT mission

    DassFow-Shallow, Variational Data Assimilation for Shallow-Water Models: Numerical Schemes, User and Developer Guides

    Get PDF
    DassFlow is a computational software for free-surface flows includingvariational data assimilation (4D-VAR), sensitivity analysis, calibration features (adjoint method). The code version "shallow" solves shallow-water like models (Saint-Venant's type).The other version (ALE, not detailed in the present document) includes free-surface Stokes like models (low Reynolds, power-law rheology, ALE surface dynamics). All source files are written in Fortran 2003 / MPI. For more details and references, please consult DassFlow website.In the present manuscript, we describe: the equations, the compilation/execution instructions, the input / output files (user guide), the finite volume schemes, few validation test cases included in the archive, and the code structure (developer guide)

    Inverse computational algorithms for flood plain dynamic modelling

    Get PDF
    Flood plain dynamic modelling remains a challenge because of the complex multi-scale data, data uncertainties and the uncertain heterogeneous flow measurements. Mathematical models based on the 2d shallow water equations are generally suitable but wetting-drying processes can be driven by small scale data features. The present study aims at deriving an accurate and robust direct solver for dynamic wet-dry fronts and a variational inverse method leading to sensitivity analyses and data assimilation processes. The numerical schemes and algorithms are assessed on academic benchmarks representing well some flood dynamic features and a real test case (Lèze river, southwestern of France). Original sensitivity maps with respect to the (friction , topography) fields are performed and discussed. Furthermore, the identification of inflow discharges (time series) or roughness coefficients defined by land covers (spatially distributed parameters) demonstrate the relevance of the approach and the algorithm efficiency. Inverse computational methods may contribute to breakthrough in flood plain modelling

    Robust finite volume schemes for 2D shallow water models. Application to flood plain dynamics

    Get PDF
    This study proposes original combinations of higher order Godunov type finite volume schemes and time discretization schemes for the 2d shallow water equations, leading to fully second-order accuracy with well-balanced property. Also accuracy, positiveness and stability properties in presence of dynamic wet/dry fronts is demonstrated. The test cases are the classical ones plus extra new ones representing the geophysical flow features and difficulties

    Méthode des éléments spectraux pour la propagation d'ondes sismiques en milieu géologique fluide-solide avec pas de temps locaux et couches absorbantes parfaitement adaptées C-PML

    No full text
    In the petroleum industry, many oil research is made offshore. Finite difference or finite element methods are usually used to numerically simulate seismic results of petroleum campaigns. In this manuscript, we used the spectral element method (Komatitsch and Tromp, 2002) which is a finite element method with a high degree polynomial interpolation. When studying offshore seismic propagation, geological models used are composed of two types of medium: a fluid part (ocean) and a solid part (ocean bottom). As we are interested in the solid part where the oil reservoirs can be, we want to reduce the computational cost on the fluid part which is less important. To do so, we use different time steps in the fluid and in the solid. In most of the case, velocity wave in the fluid is smaller than in the solid, therefore, the stability condition (CFL), which depends on the maximum velocity and the time step, allow us to take a bigger time step in the fluid while preserving the numerical stability of the computation. My work in this thesis has consisted in introducing a local time stepping technique and in insuring coupling between fluid and solid by conserving energy on the interface. In order to make more realistic simulations, I also introduced absorbing boundary conditions called Perfectly Match Layer (PML) for fluid-solid models. Such boundary conditions have the ability to absorb waves and then avoid artificial unrealistic reflections of the boundaries in order to simulate semi-infinite models.Dans l'industrie pétrolière, de nombreuses campagnes sismiques visant à trouver de nouveaux champs pétroliers sont effectuées en mer. Afin de reproduire numériquement les résultats de ces campagnes d'acquisitions sismiques marine, les méthodes de différences finies ou d'éléments finis sont le plus souvent utilisées. Dans cette thèse, nous travaillons avec la méthode des éléments spectraux (Komatitsch et Tromp, 2002), qui est une méthode d'éléments finis explicite à haut degré d'interpolation polynomiale. Pour de l'acquisition sismique marine, la propagation d'ondes s'effectue dans des modèles composés de deux parties : une partie fluide (la couche d'eau épaisse homogène représentant l'océan) et une partie solide (les roches composant le fond des océans). La partie fluide étant moins intéressante que la partie solide où peuvent se trouver les réservoirs d'hydrocarbures, nous voulons une méthode numérique où la propagation d'ondes dans le fluide est la moins coûteuse possible en temps calcul. Un moyen de gagner ce temps est d'utiliser une méthode intégrant des pas de temps locaux (Diaz et Joly, 2005) où la partie fluide est traitée à l'aide d'un pas de temps plus grand que dans la partie solide. Pour cela, il faut s'assurer que l'augmentation du pas de temps sans modifier le maillage ne change pas la condition de stabilité CFL dans le fluide. Cette condition est calculée à partir de la vitesse maximale de propagation des ondes dans le domaine, et des pas de temps et d'espace. Or, les modèles utilisés présentent généralement un fort contraste des vitesses à l'interface fluide-solide en faveur du solide. C'est donc le pas de temps de ce dernier qui gouverne la condition CFL. Donc augmenter le pas de temps seulement dans le fluide ne changera pas la condition CFL et la simulation numérique pourra s'effectuer sans risquer l'explosion de la solution pour cause d'instabilité du schéma numérique. Mon travail a consisté à intégrer un tel procédé dans la méthode des éléments spectraux du code SPECFEM à 2D. Comme on a des pas de temps différents de part et d'autre de l'interface fluide-solide, les données à échanger entre les deux milieux ne sont pas coordonnées car à des temps différents. Pour palier à cette difficulté, on impose la conservation de l'énergie à notre système pour la construction des conditions de raccord. Cette manoeuvre implique néanmoins la résolution d'un système linéaire l'interface mais son coût est négligeable comparé aux calculs économisés dans la partie fluide. Afin de se rapprocher plus encore de la réalité des modèles pétroliers, j'ai travaillé sur l'implémentation de couches absorbantes de type CPML (convolutional perfectly match layer, voir Komatitsch et Martin 2007 ) qui permettent de simuler un milieu infini en absorbant toutes les ondes y pénétrant et donc évitent des réflexions parasites des bords du domaine. Ces conditions ont été implémentées pour des modèles fluide-solide à 2D

    Méthode des éléments spectraux pour la propagation d'ondes sismiques en milieu géologique fluide-solide avec pas de temps locaux et couches absorbantes parfaitement adaptées C-PML

    No full text
    Dans l'industrie pétrolière, de nombreuses campagnes sismiques visant à trouver de nouveaux champs pétroliers sont effectuées en mer. Afin de reproduire numériquement les résultats de ces campagnes d'acquisitions sismiques marine, les méthodes de différences finies ou d'éléments finis sont le plus souvent utilisées. Dans cette thèse, nous travaillons avec la méthode des éléments spectraux (Komatitsch et Tromp, 2002), qui est une méthode d'éléments finis explicite à haut degré d'interpolation polynomiale. Pour de l'acquisition sismique marine, la propagation d'ondes s'effectue dans des modèles composés de deux parties : une partie fluide (la couche d'eau épaisse homogène représentant l'océan) et une partie solide (les roches composant le fond des océans). La partie fluide étant moins intéressante que la partie solide où peuvent se trouver les réservoirs d'hydrocarbures, nous voulons une méthode numérique où la propagation d'ondes dans le fluide est la moins coûteuse possible en temps calcul. Un moyen de gagner ce temps est d'utiliser une méthode intégrant des pas de temps locaux (Diaz et Joly, 2005) où la partie fluide est traitée à l'aide d'un pas de temps plus grand que dans la partie solide. Pour cela, il faut s'assurer que l'augmentation du pas de temps sans modifier le maillage ne change pas la condition de stabilité CFL dans le fluide. Cette condition est calculée à partir de la vitesse maximale de propagation des ondes dans le domaine, et des pas de temps et d'espace. Or, les modèles utilisés présentent généralement un fort contraste des vitesses à l'interface fluide-solide en faveur du solide. C'est donc le pas de temps de ce dernier qui gouverne la condition CFL. Donc augmenter le pas de temps seulement dans le fluide ne changera pas la condition CFL et la simulation numérique pourra s'effectuer sans risquer l'explosion de la solution pour cause d'instabilité du schéma numérique. Mon travail a consisté à intégrer un tel procédé dans la méthode des éléments spectraux du code SPECFEM à 2D. Comme on a des pas de temps différents de part et d'autre de l'interface fluide-solide, les données à échanger entre les deux milieux ne sont pas coordonnées car à des temps différents. Pour palier à cette difficulté, on impose la conservation de l'énergie à notre système pour la construction des conditions de raccord. Cette manoeuvre implique néanmoins la résolution d'un système linéaire l'interface mais son coût est négligeable comparé aux calculs économisés dans la partie fluide. Afin de se rapprocher plus encore de la réalité des modèles pétroliers, j'ai travaillé sur l'implémentation de couches absorbantes de type CPML (convolutional perfectly match layer, voir Komatitsch et Martin 2007 ) qui permettent de simuler un milieu infini en absorbant toutes les ondes y pénétrant et donc évitent des réflexions parasites des bords du domaine. Ces conditions ont été implémentées pour des modèles fluide-solide à 2D.In the petroleum industry, many oil research is made offshore. Finite difference or finite element methods are usually used to numerically simulate seismic results of petroleum campaigns. In this manuscript, we used the spectral element method (Komatitsch and Tromp, 2002) which is a finite element method with a high degree polynomial interpolation. When studying offshore seismic propagation, geological models used are composed of two types of medium: a fluid part (ocean) and a solid part (ocean bottom). As we are interested in the solid part where the oil reservoirs can be, we want to reduce the computational cost on the fluid part which is less important. To do so, we use different time steps in the fluid and in the solid. In most of the case, velocity wave in the fluid is smaller than in the solid, therefore, the stability condition (CFL), which depends on the maximum velocity and the time step, allow us to take a bigger time step in the fluid while preserving the numerical stability of the computation. My work in this thesis has consisted in introducing a local time stepping technique and in insuring coupling between fluid and solid by conserving energy on the interface. In order to make more realistic simulations, I also introduced absorbing boundary conditions called Perfectly Match Layer (PML) for fluid-solid models. Such boundary conditions have the ability to absorb waves and then avoid artificial unrealistic reflections of the boundaries in order to simulate semi-infinite models.PAU-BU Sciences (644452103) / SudocSudocFranceF

    Dislocation strengthening in FCC metals and in BCC metals at high temperatures

    No full text
    International audienceTill now, it was widely believed that the dislocation strengthening coefficients used in the Taylor-like relation were universal for a given crystallographic class of materials. In the present study, it is shown that this is actually untrue because of two effects that influence the strength of interactions between slip systems, namely the value of the Poisson ratio and the occurrence of doubly degenerated, asymmetric, junction configurations. New strengthening coefficient values for reactions between slip systems were determined using dislocation dynamics simulations on five representative FCC metals, plus germanium, and on five BCC transition metals for {110} and {112} slip systems at high homologous temperatures. The value of the Poisson ratio affects all the strengthening coefficients to various extents ranging from small to substantial. The effects of configuration asymmetry and Poisson's ratio are more marked in BCC metals than in FCC metals. These two major effects arise from a number of concurring dislocation mechanisms, which are discussed in some detail. It is expected that the use of accurate material-dependent coefficients will notably improve the predictive ability of current models for strain hardening
    corecore