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Abstract

This study proposes original combinations of higher order Godunov type
finite volume schemes and time discretization schemes for the 2d shallow
water equations, leading to fully second-order accuracy with well-balanced
property. Also accuracy, positiveness and stability properties in presence
of dynamic wet/dry fronts is demonstrated. The test cases are the classi-
cal ones plus extra new ones representing the geophysical flow features and
difficulties. Preliminary numerical experiments give some key features be-
tween the topography representation scale and the grid size, and depending
on the scheme order. A second aspect aims at performing sensitivities anal-
ysis and variational data assimilation, based on the adjoint model. Original
sensitivity maps with respect to the basal (roughness, topography) fields are
discussed. Inflow discharges and roughness coefficients spatially distributed
are efficiently inferred on a real-like flood plain test case.

Keywords: Shallow water, finite volumes, second order, adjoint, data
assimilation, sensitivity, wet-dry front, flood plain.

1. Introduction

The 2D Shallow Water (SW) equations, with or without the Coriolis
term, can be suitable to model many types of geophysical flows and waves
propagation, eg in the atmosphere, the oceans, the rivers. These geophys-
ical flows involves multi-scales, badly known topographies (or well known
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but at a fixed scale), uncertain quantities at open boundaries, uncertain val-
ues of the model parameter (eg the basal roughness coefficients) and large
computational domains. Many of them (eg flood plain in river hydraulics,
coastal flows) involves a dynamic wet-dry front. In this context, accurate
higher-order numerical schemes can become a key feature to reach accept-
able accuracy-computational cost balances, a reliable wet-dry front dynamic
computation can be a key feature of the numerical model accuracy too. In
other respect, sensitivity analyses become a key ingredient to better under-
stand the complex interactions and set up the model; finally a full data
assimilation procedure becomes a crucial step to design a reliable predictive
model.
The aim of this paper is to elaborate and assess accurate and robust com-
putations of 2d SW equations with friction and in presence of wet dry front
dynamics, typically for real applications in river hydraulics, low-waters or
flood plain dynamics.

The first feature of the present study is the direct modeling of this flow
type. To do so, we classically use finite volume schemes on unstructured
meshes combining Godunov type solvers completed with MUSCL technics
and an implicit-explicit Runge-Kutta (IMEX) second order time discretiza-
tion, together with well balanced features. Original combinations of these
already existing methods are elaborated, completed by few necessary modifi-
cations; the result leading to demonstrated fully second-order accuracy (both
in space and time), well-balanced property (water at rest is preserved), pos-
itiveness and stability in presence of dynamic wet/dry fronts. (Note that
the second order accuracy can be mathematically reach on smooth solutions
only; nevertheless, in presence of dynamic wet/dry fronts, it will be demon-
strated that the higher-order schemes are more accurate than the first order
ones, even if their convergence rate decreases).

The application of FV schemes to hydraulic problems has started in the
early eighties together with the development of these schemes for aerody-
namic applications, see e.g. [1] treating of SW equations with bathymetry
and friction. MUSCL technics comes after the pioneering work [2]. First
analysis higher-order are written in [3] (on structured meshes) and in [4] in-
cluding hydraulic applications. The success of these MUSCL approaches is
mainly due to the efficiency of their extension to unstructured meshes. Com-
plete and recent reviews can be found for example in [5, 6].
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As mentioned above, the present contribution aims at elaborating a set
of methods leading to a full second order scheme (both in space and time),
accuracy and robustness in presence of wet-dry front situations. Concerning
the choice of an approximate Riemann solver, it is proposed to use the HLLC
solver [7, 8], combined with an ad-hoc estimate of wave velocity [9]. Con-
cerning the MUSCL technics, some tools in relation with mono/multi-slope
framework and corresponding limiters combined with the well-balanced prop-
erty are described. The well-balanced property (to preserve water at rest)
comes from the early work [10]; it has been followed by numerous papers, see
also e.g. [11] for the theoretical framework. In view of hydraulic applications,
it has been found in the present study that the quite recent well-balanced
tool due to [12, 13] provides a robust and accurate framework. Concerning
the time stepping, it has been found that an appropriate second order time
scheme of IMEX type is necessary to achieve an actual second order accu-
racy, also robustness with respect to a lot of external effects (such as the
variability of topographical effects).
To our best knowledge, the resulting numerical scheme combination is new,
and it leads to a numerical solver accuracy, stability, and finally robustness,
as never published in the literature.
The numerical schemes are assessed by performing classical test cases from
the literature plus extra new ones, representing the geophysical shallow flow
features and difficulties.

Furthermore, original phenomena are highlighted. Based on the present
accurate FV solvers, the SW equations filtering property of the bathymetry
variations are numerically analyzed into details, in the case of a 1d open-
channel flow. In addition of its mathematical interest, this feature is im-
portant in particular in a context of observation of such free-surface shallow
flows from above (eg satellite observations of the water surface). Also, this
present preliminary study gives some key features to address the issue of the
topography scale - grid adequacy. To our best knowledge, this question was
not addressed in the literature yet.

Finally, a detailed comparison of the first order scheme and the second
order scheme is made in terms of accuracy (and CPU time) on a real-like test
case: a (virtual) flood event on the Lèze river, south-western France. The
bathymetry and topography are the real ones (the flood plain topography
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has been deduced from very fine LIDAR data); the event remains virtual in
the sense that no accurate measurements were collected during the event.

A second feature of the present study is the elaboration of variational
sensitivities, based on the adjoint of the numerical model described above,
and variational data assimilation (4D-var method). Recall that in any geo-
physical context, usually the boundary conditions at open boundaries, the
initial condition, the model parametrization (eg the basal friction), or even
the topography are known with large uncertainties or sometimes even un-
known. Then, a data assimilation process, based on the measurements avail-
able (usually heterogeneous in space and time), becomes crucial to reduce
these uncertainties. A classical approach to assimilate data into the model
is the variational data assimilation method, based on the adjoint model and
an optimal control loop. This method allows to identify input parameters
and leads to the model calibration. It is widely employed for few geophysical
flow types (see e.g. [14] and references therein).
Concerning 1d river flow models (Saint-Venant equations), calibration and
sensitivity analysis, based on the variational approach and on filtering ap-
proaches, have been widely studied in the literature. On the contrary, for 2d
SW models, few studies only address sensitivity analyses and parameter iden-
tification (eg friction parameter, boundary conditions) using the variational
approach (adjoint method). One of the reason is the heavy task to elaborate
the adjoint model, then to make it run in reasonable CPU time and memory
storage. Let us cite [15] which treats of a 2d SW river model coupled with
a simplified sediment transport model; [16], [17] treating of the assimilation
of a flood plain image (post-treated SAR data) into the 2d flow model; [18],
[19] treating simultaneously the assimilation and the coupling 2d local - 1d
global flow models in academic configurations; [20] treating of a barotropic
tidal model; [21], [22] treating of the assimilation of surface drifting particles
(lagrangian data) into the 2d flow model. All these studies are based on the
minimization of a cost function, with its gradient computed using the adjoint
model, then a descent algorithm (local minimization).
Let us point out that none of these studies are based on higher-order numer-
ical schemes; also the wet-dry front is classically regularized (using a cut-off
value at the front). In the context of a flood plain dynamic (observed from
above or not), both the high accuracy of the model (direct and adjoint ones)
and the wet-dry front dynamics may be crucial features of the global model
accuracy and reliability. In other respect, let us cite [23] which proposes an
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original analysis of the analytical properties of the solutions of the sensitivity
equations for steady-state 2d SW solutions.

In the present article, original variational sensitivities analyses are pre-
sented. A cost function measuring the discrepancy of the computed water
elevations at two (virtual) gauge stations (synthetic data with realistic noise
amplitudes) is classically defined. The cost gradient is computed by per-
forming the adjoint code of the numerical models described previously. The
latter is essentially obtained by automatic differentiation using the software
Tapenade [24], plus few tricks to optimize the memory required and to make
"reverse" the MPI commands. The full model (direct+adjoint) is accurately
assessed (using the procedures described here).
The test case is the same portion of Lèze river as previously. The computed
sensitivities are with respect to: a) the Manning-Strickler friction coefficient
(denoted by n) which is locally defined i.e. without any a-priori on land
covers (one value per cell); b) the topography elevation (denoted by zb).
The bathymetry sensitivity pattern is globally comparable to the friction sen-
sitivity one but the bathymetry one is more point-wise, less diffused. These
spatially distributed sensitivity maps greatly help the hydraulic modeler to
better understand the mathematical model, the hydraulic model (combining
the DTM, the parametrization) and the flow. Also, these sensitivities maps
with respect to the bathymetry zb can give information in view to define a
discrete bathymetry field consistent with the friction field.

Next identification - calibration numerical experiments are performed.
The identified parameters are: a) The friction Manning-Strickler coefficients
defined by land covers (6 in this case); b) the inflow discharge Qin(t) at up-
stream (open boundary). It is twin experiments since the data are generated
by the model (then a realistic random noise is added). Data are the same
as previously: elevation time-series measurements at two (virtual) gauge sta-
tions. These numerical experiments demonstrate the approach capabilities in
a virtual flood plain dynamic context. Based on the know-how exposed here,
the computational cost of the data assimilation process becomes affordable
(both in terms of CPU time and memory).
As it is well known, the drawback of the adjoint based approach is the large
number of cost function evaluations required for parameter identifications
(between10 and 35 in the present studies to reach an excellent accuracy on
the parameters sought); nevertheless it is much less than any stochastic ap-
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proach (which does not require the cost gradient information). The very
informative sensitivity maps (spatially distributed information) require the
running of the direct and the adjoint model only; hence a sensitivity analysis
costs in terms of CPU time, roughly 5 times (1+4) a direct simulation. But,
recall that these sensitivity maps are valid at one parameter value only (eg
at one roughness field value). An other drawback of the adjoint method is
due to the requirement of the adjoint code-model. Nevertheless, in DassFlow
software, the adjoint code generation is fully automated. To do so, firstly
the direct source code is designed to be differentiated almost entirely by an
automatic differentiation tool (Tapenade [24] in the present case); next few
tricks for MPI commands need to be introduced, but they are implemented
automatically by an extra script. Also the code validation (direct+adjoint),
based on classical procedures, is almost fully automatic.

All the numerical schemes and algorithms presented here have been im-
plemented into the computational platform DassFlow (Data Assimilation for
Free Surface Flows), [25, 26, 27]. Of course, all the methods elaborated in the
present context (the finite volume schemes and the variational data assim-
ilation process based on the adjoint model) and the resulting software, can
be extended and applied to any other flow modeled by the 2d SW equations
(including those with a non negligible Coriolis force eg tidal flows, by adding
it simply).

The paper is organized as follows. In Section 2, the direct mathemat-
ical model and the finite volume schemes elaborated (1st and 2nd order)
are presented. In Section 3, the inverse model (in the sense the adjoint,
the resulting variational sensitivities and the data assimilation process) is
presented. Classical and original benchmarks to assess and compare the fi-
nite volume schemes are performed in Section 4. The real-like flood plain
test case (based on the real topography and a historical-like inflow discharge
of the Lèze river) is considered in Section 5, both for the direct numerical
comparisons and the inverse features demonstration and analysis (sensitiv-
ity analyses and parameter identifications). Some remarks and perspectives
are proposed in the conclusion (Section 6). The appendix detail the assess-
ment procedures of the adjoint code, the way to transform the direct MPI
commands into the adjoint ones, few tricks to improve the adjoint code mem-
ory, and a speed-up curve demonstrating the capabilities of the resulting full
model (direct+adjoint).
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2. Direct Model

In this section, we describe the direct (or forward) model: the two-
dimensional SW equations discretized using a FV method. The schemes are
first or second-order, both in space and time, well-balanced (water at rest is
preserved), positive, and the friction source term is implicitly discretized in-
suring stability in presence of dynamic wet/dry fronts. The resulting schemes
are obtained from new combinations of existing techniques and/or extension
of existing ones. The main features are:

• accurate waves speed estimates considering an HLLC approximate Rie-
mann solver,

• the wet-dry front dynamic independent of any regularization (i.e. no
cut-off on the depth value),

• MUSCL reconstruction, well-balanced schemes, "implicitation" of the
friction term together with an implicit-explicit Runge-Kutta (IMEX)
time stepping method insuring global second order time space accuracy,

• robust implementation of outflow and inflow condition, including some
feedback stabilization procedure.

To our best knowledge, such combinations are new; this leads to a nu-
merical solver accurate and stable as never published in the literature. In
next section, we present benchmarks, including original ones, demonstrating
these properties.

2.1. Mathematical model
The two-dimensional SW equations write in conservative form as follows:

∂tU +∇.F(U) = Sg(U) + Sf (U)

U =

[
h
hu

]
, F(U) =

 hu

hu⊗ u +
gh2

2
I

 ,

Sg(U) =

[
0

−gh∇zb

]
, Sf (U) =

 0

−gn
2 ‖u‖
h1/3

u


(1)

7



2.2. Numerical schemes notations
We denote by Ih a discretization of the computational domain Ω with

N cells Ki (cells can be triangles or quadrilaterals or mix of both). Let us
introduce some notations and conventions (see Fig.1). Considering a given
cell K (omitting i index):

• mK is the area of the cell K, m∂K its perimeter and xK its barycenter.

• e is one of the δK boundary edges, me its length and xe its center.

• Ke is the neighboring cell to K across e.

• ne,K is the unit normal to e oriented from K to Ke.

Figure 1: Some notations and conventions

2.3. Numerical fluxes
2.3.1. First order scheme

We integrate over the cellsK the hyperbolic system (1) without the source
terms Sg and Sf , and we denote byUK the piecewise constant approximation
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of U. We consider the Godunov method [28], then the semi-discrete scheme
of the homogeneous system writes:

mK
dUK

dt
+
∑
e∈∂K

me Fe(UK ,UKe ,ne,K) = 0 (2)

The rotational invariance property of the SW equations (1) allows to
reduce this sum of 2D problem to a sum of 1D local Riemann problems such
that Fe(U

n
K ,U

n
Ke
,ne,K) = R−1

e,KF̂e(Û
n
e,K , Û

n
e,Ke

) with Ûn
e,K = Re,KU

n
K where

Re,K is the rotation matrix, see e.g. [5].
The HLLC approximate Riemann solver is used, see e.g. [5],


[
F̂HLLC
e

]
1,2

=
sKe

[
F(ÛK)

]
1,2
− sK

[
F(ÛKe)

]
1,2

+ sKsKe(
[
ÛKe

]
1,2
−
[
ÛK

]
1,2

)

sKe − sK[
F̂HLLC
e

]
3

=
[
F̂HLLC
e

]
1
v̂ ∗ with v̂∗ =

{
v̂K if s∗ ≥ 0
v̂Ke if s∗ < 0

(3)
with the wave speed estimates introduced in [9]:

sK = min
(
0, ûK −

√
ghK , ûKe − 2

√
ghKe +

√
ghK

)
sKe = max

(
0, ûKe +

√
ghKe , ûK + 2

√
ghK −

√
ghKe

) (4)

The latter insure L∞ stability, positivity and consistency with entropy
condition under a CFL-like condition, see [9]. Finally, this choice is made for
the intermediate wave speed estimate expressed as follows, see e.g. [5]:

s∗ =
sKhKeûKe − sKehK ûK − sKsKe(hKe − hK)

hKe(ûKe − sKe)− hK(ûK − sK)
(5)

This approximate Riemann solver is the mandatory first step to obtain a
stable and positive numerical solver in presence of dynamic wet/dry fronts.

2.3.2. Second order scheme
The second order scheme is based on the first order scheme above and a

monoslope MUSCL reconstruction, see e.g. [29, 30]. It consists to compute
local vectorial slopes [∇UK ]i in each cell K for each variable i. The two
reconstructed conservative variables vectors at each side of edge e are denoted
by Ue,K and Ue,Ke . They satisfy:

Ue,K = UK +∇UK .xKxe
Ue,Ke = UKe +∇UKe .xKexe

(6)
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Then, Ue,K and Ue,Ke replace UK and UKe in the original first order
semi-discrete scheme (2) to evaluate the numerical flux Fe. Thus, we have:

mK
dUK

dt
+
∑
e∈∂K

me Fe(Ue,K ,Ue,Ke ,ne,K) = 0 (7)

With such a linear reconstruction, a second-order accuracy in space can be
obtained (at least, for solutions regular enough). To this end, a least square
method is first employed to predict the vectorial slopes for each primitive
variable (WK = [ hK uK vK ]T ). These sums of squares,

Ei

([
∇̃WK

]
i

)
=
∑
e∈∂K

([WKe ]i − ([WK ]i + [∇WK ]i .xKxKe))
2

(8)

are minimized by setting the gradients to zero solution of simple 2 x 2
linear systems. This method represents a good alternative among others to
find the hyperplane [29, 31] because of its accuracy and robustness indepen-
dently to the number of neighbors (this is an important property as it will be
shown later with the wet/dry front treatment for a well-balanced scheme).
In order to prevent from large numerical dispersive instabilities, hence keep
the scheme positive, the predicted vectorial slopes need to be limited. A first
and efficient method consists to simply apply the maximum principle to the
two edge unlimited reconstructed primitive variable computed from (6) and
(8) such that the two limited reconstructed variables We,K and We,Ke at
edge e verify:

min(WK ,WKe) ≤We,K ,We,Ke ≤ max(WK ,WKe) (9)

It is what we call the MP limiter (MP for Maximum Principle). We
observe in practice that it generates very moderate oscillations at solution
singularities whereas diffusion is minimized comparatively to other classic
limiters like Minmod or Van Albada; see also e.g. [13, 32, 33, 34]. Never-
theless, the generation of new extrema and the presence of wet/dry fronts
can break down the FV mass conservation property in an unacceptable pro-
portion; the scheme is no longer positive. A first solution is to manage “by
hand” the mass conservation at the end of each time step. The mass artifi-
cially added cutting-off to zero an eventual negative water depth is removed
proportionally to neighboring wet cells. A second, and more reliable solution,
is to use the Barth limiter [35] for the water depth h:
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[∇WK ]i = min
e∈∂K

(
1, [φK,e]i

) [
∇̃WK

]
i

[φK,e]i =

 0 if ([WKe ]i − [WK ]i)[∇WK ]i .xKxe < 0
[WKe ]i − [WK ]i
[∇WK ]i .xKxe

if not

(10)
The reconstructed conservative variables vectors UK and UKe are then

obtained by a simple multiplication.

2.4. Well-balanced property with wet/dry front treatment
It is well-known that the numerical schemes must be well balanced in

the sense that the pressure term ∇
(
gh

2

/2
)

must equal the gravity source
term (−gh∇zb) in a discrete point of view: water at rest must stay at rest.
If this property is not satisfied, spurious numerical velocities are generated.
Such a phenomena may happen for example at lateral banks of the river. To
enforce this balance property, it exists many methods in the literature. In the
present study we compare two of them, and observe that they lead to different
properties and accuracies. The well-balanced property is very delicate in
presence of a wet-dry front, and combining robustness together with formal
second-order accuracy revealed to be a challenge. Our experiments lead to
recommend the approach of Audusse et al [12, 13] (so-called ’A-well-balanced
scheme’ below) which is very efficient when combined with suitable correction
of HLL flux and wet/dry treatment. For completeness, we also describe, and
have assessed, the formulation derived in [36, 37] (so-called ’E-well-balanced
scheme’ below) which was less robust or accurate in the present tests.

2.4.1. The E-well-balanced scheme
Following [36, 37], to build a well-balanced scheme, the equalities below

must be verified when zK + hK = zKe + hKe and uK = uKe = 0,

Fh
e (UK ,UKe ,ne,K) = 0∑

e∈∂K

meF
hu
e (UK ,UKe ,ne,K) = −g

∑
e∈∂K

mehe(ze − zK)ne,K (11)

using the property h∇zb = ∇(hzb) − zb∇h and the Green’s identity to
find the piecewise constant approximation of Sg(U) incorporated into the
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semi-discrete scheme (2). Next, the reconstructions at edge e of the water
depth and the topography, he and ze respectively, have to be computed in
order to derive a well-balanced scheme with a consistent discretization of
the gravitational source term Sg(U). Because of the geometrical property∑
e∈∂K

mene,K = 0, the term Fhu
e (UK ,UK ,ne,K) can be subtracted in the first

sum. After some calculations and by identification, one can easily verify,
using the HLLC approximate Riemann solver (3) to evaluate Fe, that the
two following reconstructions give the second equality in (11):

ze =
1

2
(zK + zKe) and he =

sK
sKe − sK

(hK + hKe) (12)

To find a zero mass flux, the water depths hK and hKe in the diffusive
up-winded part of the HLLC approximate Riemann solver are replaced by
zK+hK and zKe+hKe respectively. At wet/dry fronts, the bottom topography
is changed in a dry cell Ke such that zKe =zK + hK .
This numerical method can be extend to second-order taking into account
the reconstructed water depths at edge e but it has not been found stable in
all cases. More generally, changing the diffuse up-winded part of the HLLC
approximate Riemann solver cannot ensure a stable numerical model.

2.4.2. The A-well-balanced scheme
Following [12, 13], a new vectorial slope for the variable η = h + z is

first calculated in addition to the primitive variables (6). Then, the so-called
hydrostatic reconstructed water depth h∗e,K is defined with the help of a
reconstructed topography ze at edge e as follows:

h∗e,K = max(0, he,K + ze,K − ze)

with
{

ze,K = ηe,K − he,K
ze = max (ze,K , ze,Ke)

(13)

Next, the standard MUSCL reconstructed conservative variable vector
Un
e,K in semi-discrete scheme (7) is replaced by:

U∗e,K =

[
h∗e,K
h∗e,Ku

]
(14)

Including a consistent discretization of the gravitational source term Sg
with the continuous formulation, we finally obtain the following well-balanced
scheme, second order:
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mK
dUK

dt
+
∑
e∈∂K

me

(
Fe(U

∗
e,K ,U

∗
e,Ke

,ne,K)+

Sg(Ue,K ,U
∗
e,K ,ne,K) + Scg(UK ,Ue,K , zK , ze,K ,ne,K)

)
= 0

Sg(Ue,K ,U
∗
e,K ,ne,K) =

[
0

g

2

((
h∗e,K

)2 − (he,K)2
)
ne,K

]

Scg(UK ,Ue,K , zK , ze,K ,ne,K) =

[
0

−g
2

(he,K + hK) (ze,K − zK)ne,K

]
(15)

2.4.3. Robust wet/dry front treatment of A-well-balanced scheme
Our numerical experiments showed that this scheme is not stable at

wet/dry fronts perpendicular to the flow streamlines. Let us specify here
some additional requirements in order to stabilize in all cases and for all lim-
iters this second order well-balanced scheme. Firstly, all vectorial slopes are
enforced to zero in dry cells (what can be viewed as a water mask). Secondly,
these same dry cells are not taken into account in the least square method
(8) to predict the vectorial slope ∇ηn,

[∇UK ]i = 0 if hK = 0

E(∇ηK) =
∑

e∈(∂K\hKe=0)

(ηKe − (ηK +∇ηK .xKxKe))
2 (16)

These conditions are related to the typical situation in Fig.(2) where the
well-balanced property is desired with presence of a wet/dry front because
the water surface level η is constant around the cell K. The dry cell Ke has a
bottom topography zKe upper than the neibgboring wet cell K water surface
level ηK , the fluxes must be enforced to zero at the edge e between the two
cells (water cannot “climb” in this situation) and the well-balanced property
must be verified in the cell K.

Making the hypothesis that the normal velocity ûe,K is not necessar-
ily zero, a simple way to enforce Fe(U

∗
e,K ,U

∗
e,Ke

,ne,K) in (15) to be zero
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Figure 2: Typical situation of desired well-balanced property in presence of
a wet/dry front.

is for the reconstructed hydrostatic water depths h∗e,K and h∗e,Ke
to be al-

ways zero (we remark that it is effectively always true for the first or-
der version of the scheme since ze = max (zK , zKe) = zKe > hK + zK ,
h∗e,K = max (0, hK + zK − ze) = 0 and h∗e,Ke

= max (0, hKe + zKe − ze) = 0).
On the other hand, a key-point in the well-balanced method of Audusse and
al. [12, 13], in the version second order, is that the vectorial slope for the
variable η = h + z must be zero to find the well-balanced property in a cell
K. The variable η must be constant in all neighboring cells of a wet cell
which is not true in our typical case Fig.(2). So, in order to find a zero
vectorial slope for the variable η in the cell K, the dry cell Ke is not taken
into account in the least square method (8). Now, a consequence is that
ηe,K = hK + zK < ηe,Ke = ze,Ke implying that ze = max (ze,K , ze,Ke) = ze,Ke

and concluded that it is always find that h∗e,K = max(0, ηe,K − ze) = 0. Since
all vectorial slopes are enforced to zero in dry cells, it is obvious that we
have also h∗e,Ke

= 0. The sum of the non negative components of the two
sources terms Sg(UK ,U

∗
e,K ,ne,K) and Scg(UK ,U

∗
e,K , zK , ze,K ,ne,K) is reduce

to: −g
2
h2
Kne,K since ze,K−zK = hK−he,K . This does not change the demon-

stration made in [13] to find the well-balanced property in the cell K (that
use the geometrical property

∑
e∈∂K

mene,K = 0).

Fibnally, we have demonstrated that the present additional treatment
(16) to the original scheme (15) are sufficient to find the well-balanced prop-
erty in presence of wet/dry interfaces without any consideration on limitation
such it was done before. Furthermore, this does not change the global scheme

14



at wet/dry fronts since the predicted vectorial slopes only are changed. At
worst, the scheme "falls down" at the first order in cells with a neighboring
dry cell.

2.5. Time stepping and friction source term
The friction source term Sf must be implicitly discretized in presence of

dynamic wet/dry fronts because of its stiffness as soon as the water height
vanishes. This can be achieved using a splitting method, see e.g. [38, 5], and
by resolving the implicit problem:

Un+1
K = Un

K + ∆tnSf (U
n+1
K ) (17)

where Un
K refers to the previous well-balanced scheme (15) using an explicit

Euler time step to discretize the time partial derivative. Since the friction
source term Sf is zero in the mass conservation equation (1), and so hn+1 =
hn, the implicit problem (17) can be then simply to the resolution of:

∥∥un+1
∥∥un+1 + c

(
un+1 − un

)
= 0 with c =

(hn)4/3

∆tn g n2
(18)

Remarking that un+1 = α un with α ∈]0, 1[ (the vectors are colinear and
qn.qn+1 ≥ 0, the flow direction cannot be reversed) reduces this system of
non-linear equations to the resolution of a quadratic equation in α. The final
analytical solution to the implicit problem (17) is:

Un+1
K = M(Un

K ,∆t
n) with,

M(Un
K ,∆t

n) =

 hn

2 (hn)5/3 un

(hn)2/3 +

√
(hn)4/3 + 4∆tn g n2 ‖un‖

 (19)

The initial full implicit problem (17) is reduced to an explicit step. We
note that in [39], the authors have derived a similar expression by lineariza-
tion of the implicit problem which can be obtained by Taylor expansion at
first order of (19), as semi-implicit formulations of (17).

Now, obtaining a second order method using a splitting method is quite
complex when the source term is very stiff (The Strang splitting is reduced at
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first order for hyperbolic system when the source term is very stiff, see [40]).
For example, it is tempting to consider the second order SSP-RK2 method
(also known as the Heun method), see e.g. [41], including the splitted implicit
step (17) in the two forward Euler steps as follows:

U
(1)
K = Un

K + ∆tnL(Un
K)

U
(2)
K = M(U

(1)
K ,∆tn)

U
(3)
K = U

(2)
K + ∆tnL(U

(2)
K )

U
(4)
K = M(U

(3)
K ,∆tn)

Un+1
K =

1

2

(
Un
K + U

(4)
K

)
(20)

If this time splitting strategy is stable and preserve positivity without
changing the CFL-like condition for the time step ∆tn, the result is only
first order accurate (as it will be shown in benchmark problems). In or-
der to resolve this problem, the authors of [42] have recently introduced the
implicit-explicit Runge-Kutta schemes (IMEX). The method consists in com-
bining an explicit strong stability preserving Runge-Kutta (RK-SSP) time
discretization of the homogeneous system and a diagonally implicit Runge-
Kutta (DIRK) time discretization of the stiff source term, taking advantages
of both methods. The order conditions have been found using Taylor ex-
pansion. The scheme named IMEX-SSP(3,2,2) have been chosen and trans-
formed for numerical implementation purpose as follows:
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U
(1)
K = M(Un

K ,∆t
n/2)

U
(2)
K = M(2Un

K −U
(1)
K ,∆tn/2)

U
(3)
K = Un

K + ∆tnL(U
(2)
K )

U
(4)
K = M(U

(1)
K + U

(2)
K + U

(3)
K − 2Un

K ,∆t
n/2)

U
(5)
K = Un

K + ∆tnL(U
(4)
K )

Un+1
K =

1

2

(
U

(5)
K −U

(3)
K

)
+ U

(4)
K

(21)

The explicit part of this time stepping is the same SSP-RK2 scheme as
those presented above, see (20). The three stages implicit part of this time
splitting is a DIRK scheme [42] respecting A-stability, L-stability and is stiffly
accurate (R(∞) = 0) like it is demonstrated in [43]. Such stability properties
allow to deal with dynamic wet/dry front where the friction source term Sf
can be strongly stiff as soon as the water depth is vanishing. In the following
numerical experiments, this version of the DIRK scheme has found impor-
tant to treat non trivial boundaries conditions without any special correction.

The fully second order accuracy presented in the sequel are obtained using
all these combinations of methods and corrections.

2.6. Boundary conditions
Classically, we consider ghost cells Ke when the edge e ∈ ∂Ω and define

the so-called ghost conservative vectors according to the desired boundary
condition type. These ghost conservative vectors denoted by UG

Ke
for the

first-order schme and by UG
e,Ke

for the second-order scheme are directly used
in the well-balanced scheme (15). Let us point that it is quite difficult to
impose directly the right numerical flux with the considered well-balanced
scheme (15).
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2.6.1. Wall
In case of a wall applied to a edge e ∈ ∂Ω, the following ghost values are

specified: 
hGKe

= hK + zK − zKe

ûGKe
= − ûK

v̂GKe
= v̂K

(22)

The normal velocity is setted to zero and it is consider a slip condition
for the tangent velocity.

2.6.2. Inflow discharge when Fr < 1

In order to impose a discharge Qin at a subset Γin of the computational
domain boundary ∂Ω, we set the ghost cell values as follows:

hGKe
= hK

ûGKe
=

Qinh
2/3

K∑
e∈Γin

meh
5/3

K

v̂GKe
= v̂K

(23)

Such conditions are related to the distribution of the discharge Qin along
the edges e ∈ Γin . From a continuous point of view, the discharge is dis-

tributed such that Qin =

∫
Γin

c h
5/3 dx , where c is considered constant all

along the subset Γin in order to close the problem. The power law q = c h
5/3

indicates that it is made the hypothesis that we are always close to a station-
nary solution with a balance between the gravitational and the friction source
terms. Back to a discrete point of view, the discrete ghost state respects the
relations,

Qin =
∑
e∈Γin

meq̂
G
Ke

and q̂GKe
= c h

5/3

K

Nevertheless, if the wet surface at inflow Γin is non trivial, a wrong inflow
discharge value Qin (see later) can be obtained since c is no longer a constant
(the local slopes can vary in a significant range). In order to overcome this
problem, a solution is to apply a feedback process to the ghost bathymetry
values as follows:

znewb = zoldb + c
(
Fh
e (U

n
K ,U

n
Ke
,ne,K)− q̂GKe

)
(24)
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This process corrects the ghost bathymetry zGb along time steps and one
obtain very fast a value such that the mass flux Fh

e (U
n
K ,U

n
Ke
,ne,K) is strictly

equal to the imposed lineic discharge q̂GKe
.

2.6.3. Outflow control when Fr < 1

In order to control at the outflow (on Γout, a subset of the computational
domain boundary ∂Ω), either a water depth or a rating curve Qout(h) are
imposed. The ghost cells values write:

hGKe
= huser or fuser(Qout)

ûGKe
= ûK + 2

(√
g (hK − hGK)

)
v̂GKe

= v̂K

(25)

where fuser(Qout) is a given rating curve. While imposing a water depth in
the ghost cell directly (or interpolated from a tabulated rating curve η(Qout)

with Qout =
∑
e∈Γout

me F
h
e (U

n
K ,U

n
Ke
,ne,K)), it is specified that the Riemann

invariant is conserved along each normal edge. The conditions (25) allow to
control the flow at Γout while introducing a minimum of perturbations in the
numerical solution.

2.6.4. Second-order scheme case
In the case of the second-order scheme, one needs to reconstruct the

conservative variable vector UG
e,Ke

at ghost side of edge e ∈ ∂Ω. First, UG
Ke

is
computed according to the previous conditions (22), (23) and (25) and used
in the least square method (8) to compute the vectorial slopes in the interior
cell K. Next, the same previous conditions are used a second time replacing
UK by Ue,K to obtain UG

e,Ke
. Finally, the hydrostatic reconstructed water

depth UG∗
K and UG∗

e,K are computed in the same way through equations (13)
and (14) with zGe,Ke

= ze,Ke .

2.7. Stability criteria
The CFL-like condition for the time step ∆tn is, see e.g. [9],

∆tn = c min
K∈Ω

(
2 mK

m∂K

(
‖unK‖+

√
ghnK

)) (26)

with a constant c ∈ [0.5, 0.9] in practice.
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For numerical purpose, the eventual round-off error generating a negative
water depth is elimitated at the end of each forward Euler time step hn+1

K =
max(0, hn+1

K ).
The forthcoming numerical experiments showed that no significant cut-

off of the water depth is required while using the present numerical scheme;
a cut-off value hε has been fixed very small (about 10−10), most often to the
machine precision 10−14.

3. Inverse Model

In this section, the adjoint-based method used to compute variational
sensitivities hence conduct sensitivity analyses is presented. Next, the full
optimization process used to calibrate the flow model by identifying its un-
certain or unknown input parameters is described into details. As mentioned
previously, the optimal control - adjoint based method is classical in the data
assimilation community; nevertheless, its fine understanding and implemen-
tation always remains a challenge in an application context. To our best
knowledge, the present accurate, "automatically" derived and fully assessed
approach is still innovative in the numerical river hydraulics research com-
munity, in particular if based on the accurate and robust numerical scheme
described previously. Variational sensitivity results remain very promising in
view to improve surface water flow analyses. The algorithms described below
are implemented into the computational software DassFlow, [26, 25, 27].

First, the inverse problem is stated as a optimal control problem. Since
it is solved using the adjoint model, since the latter is obtained from the
direct source code differentiation (automatic differentiation using Tapenade
software, [24]), the link from the exact differential of the cost function and
the adjoint code automatically generated is highlighted. Next, the so-called
variational sensitivities are defined as being the gradient of the cost func-
tion; it is local information in the sense the gradient values are valid at a
given control parameter value only (first order Taylor’s expansion). Next, the
variational data assimilation process (also called 4D-var in the literature) is
described. The latter allows to calibrate the model by identifying the input
parameters making fit the model with the observations (eg elevation water
surface values).
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Lest us point out that in the appendix, the process to valid accurately the
direct code - adjoint code and the corresponding gradient are presented. In
addition, few fundamental tricks to implement the process in a MPI context
are presented; also few tricks to make decrease the (huge) memory required
intrinsically by the automatic differentiation.

3.1. The variational inverse problem
The so-called "forward code" solves the 2D shallow-water equations (1)

and computes the model’s response j (a scalar valued function). The model’s
response j depends on the input parameters of the model. The input param-
eters are denoted by k, it is the control vector. It can include scalar value or
spatially distributed variables; typically k can contain the inflow discharge,
the outflow boundary conditions (eg discharge, rating curve parameter), the
Manning-Strickler roughness coefficients (spatially distributed quantity), the
bathymetry, the initial condition or a mix of all these "parameters".

In a data assimilation context, j(k) measures the misfit between the nu-
merical solution and the observations; it is the cost function. Otherwise, j
can be defined from the state of the system only, or its derivative, for a stabil-
ity analysis purpose for example. The reader can refer to [44, 45] educational
resources for more details on the approach.
A typical cost function in the present data assimilation context writes as
follows:

j(k) =

∫
‖φobs − φ(k)‖2

∗ dx + regularization terms (27)

In the present context, the quantity φ denotes either the water elevation, or
the water depth or the discharge, depending on the observations available.
Subscript obs denotes an observed quantity. Usually, the regularization term
is a quadratic term in k or its derivatives, hence regularizing and locally
"convexifying" the cost function (Tykhonov’s regularization). Also the reg-
ularization term is used to introduce a "good" a-priori on the optimal values
sough.
The data assimilation problem reads as an optimal control problem as follows
:

min
k

j(k) (28)
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where φ(k) is deduced from the solution of the forward model (1) at k given.

Calibrating the model or identifying some parameters consists to solve
this optimization problem. It is done classically using descent algorithms
(typically quasi-newton algorithm). Thus one need to compute the gradient
of j with respect to k. The latter is performed by introducing the adjoint
model in order to obtain all partial derivatives of j (with respect to all com-
ponents of k) in one extra model resolution.

3.2. Adjoint method
3.2.1. Source code differentiation and gradient

Let us describe the link between the forward code, the cost function j,
the adjoint code generated automatically using an automatic differentiation
software source-to-source and the resulting gradient.
For a sake of simplicity, the link is described in the case the input param-
eters are: 1) the initial condition; 2)the inflow discharge (boundary con-
trol, time dependent); 3) the Manning-Strikler roughness coefficient n (time-
independent, spatially distributed coefficient). In this case: k = (y(0); qin, n)
with y0 = (h0,q0).
The total differential dj(k) of the cost function j(k) writes as follows :

dj(k) = ∂j
∂y0

(k) · δy0 + ∂j
∂qin

(k) · δqin + ∂j
∂n

(k) · δn (29)

It is showed below how the output of the adjoint code generated by algo-
rithmic differentiation, and using Tapenade software for example [24], corre-
sponds to the partial derivatives of the cost function j with respect to the
control variables. The presentation below follows those presented in [46].

LetK be the space of control variables and Y the space of the forward code
response. The direct code can be represented as the operator: M : K −→ Y
with:

Y =
(
y, j
)T

Let us point out that both the state and the cost function of the system are
included into the response of the forward code.

The tangent model writes: ∂M
∂k

(k) : K −→ Y . It takes as input variable a
perturbation of the control vector dk ∈ K, then it gives the variation dY ∈ Y
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as output variable:

dY =
∂M
∂k

(k) · dk

The adjoint model is defined as the adjoint operator of the tangent model.
This can be represented as follows:

(
∂M
∂k

(k)
)∗

: Y ′ −→ K′. It takes dY ∗ ∈ Y ′
an input variable and provides the adjoint variable dk∗ ∈ K′ at output:

dk∗ =

(
∂M
∂k

(k)

)∗
· dY ∗

Next, the link between the adjoint code and the "computational" gradient
is as follows. By definition of the adjoint operator, we have:〈 (

∂M
∂k

)∗· dY ∗, dk〉
K′×K

=
〈
dY ∗,

(
∂M
∂k

)
· dk
〉
Y ′×Y

(30)

or, using the relations presented above:〈
dk∗, dk

〉
K′×K =

〈
dY ∗, dY

〉
Y ′×Y . (31)

If we set dY ∗ = (0, 1) and by denoting the perturbation vector dk =
(δy0, δqin, δn), we obtain:

〈(
0
1

)
,

(
dy∗

dj∗

)〉
Y ′×Y

=

〈 δy∗0
δq∗in
δn∗

 ,

 δy0

δqin
δn

〉
K′×K

Moreover, by definition:

dj = ∂j
∂y0

(k) · δy0 + ∂j
∂qin

(k) · δqin + ∂j
∂n

(k) · δn

Therefore, the adjoint variable dk∗ (output of the adjoint code with dY ∗ =
(0, 1)) corresponds to the partial derivatives of the cost function j:

∂j
∂y0

(k) = y∗0
∂j
∂n

(k) = n∗ ∂j
∂qin

(k) = q∗in

In summary, in order to compute the "computational" gradient (par-
tial derivatives of the cost function J using differentiation of the forward
code), first, the direct code is runed, second the adjoint code is runed with
dY ∗ = (0, 1) as input.
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The adjoint code obtained via automatic differentiation costs approxima-
tively 3-7 times the direct code. A basic calculation shows that a factor 3 is
a minimum, while in practice a factor 6 times is not bad.
In the appendix, the process to valid accurately the direct code - adjoint code
and the corresponding gradient are presented.
The adjoint code obtained by automatic differentiation is reverse in the mem-
ory path, and it requires a very large amount of memory. Furthermore, the
variational data assimilation process described below requires a large number
of minimization iterates, typically 10-50. Therefore, in practice HPC codes
are required combined with a kind-of optimization of the memory manage-
ment. In the appendix, few fundamental tricks to implement the process in
a MPI context are presented; also few tricks to make decrease the (huge)
memory required intrinsically by the automatic differentiation. Finally, the
speed-up curve obtained in DassFlow case is presented.

3.2.2. Variational sensitivities
Given a perturbation of the control vector dk ∈ K, we have:

j(k + dk) ≈ j(k) +∇j(k).dk

at first order (Taylor’s expansion). Thus, the gradient value ∇j(k) provides
a local sensitivity of the cost function (output of the model) with respect
to the input parameters. In others words, the ith value ∂j

∂ki
(k) gives the

sensitivity of the response of the model with respect to the ith parameter,
eg the Manning-Strickler coefficient at one location point. The sensitivities
obtained are local since they are valid at a given point k only. The result-
ing sensitivity analysis tool is an important feature which provides a better
understanding of both the physics and the model by quantifying the roles of
the various physical parameters and the influences of parameter variations
on the behavior of the system.

3.3. Data assimilation and twin experiments
As mentioned previously, the (variational) data assimilation problem con-

sists to solve (28). The minimizing procedure operates on the control vector
k to generate a set of parameters which allows to obtain a computed model
output closer to the observations. In the computations presented in next
section, the classical quasi-newton L-BFGS algorithm is employed. More
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precisely, the L-BFGS algorithm implemented in the M1QN3 routine (see
[47]) is called ate each minimization iterate. The global optimization process
is represented in Figure 3.

Forward code

Adjoint code

First guess

cost function and 

its gradients

L−BFGS algorithm

(M1QN3 routine)

control variables

Optimal values

of control variables

if converged

S
IM

U
L

A
T

O
R

0T

0 T

search

linear

Optimization

routine

Figure 3: Principle of a 4D-Var type variational data assimilation algorithm.

Let us point out that each variable of the control vector may be actived
or not, as an actual control variable. In practice, it is possible to identify
only few of them at same time and depending on the observations available
of course.

The methodology of twin experiments is used as a first step toward real
data processing and calibration model. Twin experiments are designed as
follows : the reference parameters of the model kref are used to generate
the observations yobs. Next, the goal is to retrieve the set of parameters kref
starting from an initial guess k 6= kref and using the minimization process
described above. Thus, the algorithm computes at each iteration l a new set
of parameters kl according to the gradient ∂j

∂k
in order to make decrease the

cost function value j(kl).

Twin experiments are an ideal framework but they are a crucial step
to better understand and assess the particular inverse problem addressed.
While performing twin experiments, random Gaussian noise is added to the
synthetic data in view to define real-like test cases.
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4. Finite Volume Solver Benchmarks

The present section aims at assessing the accuracy and stability, hence
the robustness, of the numerical solvers elaborated in Section 2, in particular
in presence of the friction term and wet-dry fronts. We consider the fol-
lowing classical test cases from the literature : the parabolic bowl, and two
dam-break test cases: a regularized version and a more classical case (those
with the advancing wet-dry front). Both are considered with the realistic
Manning-Strickler friction term.
The convergence rate of the methods are carefully investigated. As expected,
the actual convergence rates depends on the regularity of the solution sought
(it is smooth or not). The present choice of test cases and the computations
performed below give detailed information on the actual convergence rates
of for each ’global’ scheme (i.e. in space and time and including all their
ingredients). Let us notice that the same questionings as above have been
addressed for example in [48]. Nevertheless the present numerical investi-
gations are wider and are led more into details, in particular in terms of
convergence rates.

A fourth test case, relevant in the context of geophysical flows, is ex-
plored. It is an open channel flow with a real like topography. The goal is
on one hand to compare the performances of first and second order schemes;
on the other hand to explore the adequacy required between the topography
representation scale and the mesh size, in terms of resulting accuracy, see
Fig. 11.

Let us point out that the realistic Manning-Stricker friction formulation
is used in all cases, except in the bowl case where the classical analytical
solution is used. The results obtained are as follows.
In the dam-break test case, regularized version (the solution is smooth, no
front, but there is the Manning-Strickler friction term), the obtained rate
of convergence for IMEX-SSP(3,2,2) scheme is about 2 while for RK-SSP2
scheme, it equals to 1 only, see Tab. 2. Actually, the latter scheme is a fake
order two scheme.
In the parabolic bowl case, the convergence rate must intrinsically be deteri-
orated; in the present experiments, while using the fully second order scheme
IMEX-SSP(3,2,2), the obtained rate of convergence is about 1.5, while if us-
ing the second order scheme RK-SSP2, the convergence rate equals 1 only,
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see Tab. 3.
In the classical dam-break test case, like previously and since the presence
of the wet-dry front, the convergence rate is intrinsically deteriorated. The
numerical experiments demonstrate an order 1 for all schemes, see Tab. 3.
Nevertheless, the second order schemes, in particular the actual second order
scheme, the accuracy is much higher than those obtained with the first order
scheme, even if its convergence rate equals 1, see Fig. 9.
Finally, we point out that the present dam break test case, with the realistic
friction formulation (and not a linear one for example) and the wet-dry front,
is a good benchmark to assess actual robustness and accuracy of a numerical
scheme dedicated to flows in presence of wet-dry fronts (such as in flood plain
dynamics or coastal flows).

Notations. In all the numerical tests, the following error norms are con-
sidered:

ep(x) =
‖xnum − xexact‖p
‖xexact‖p

, eTp (x) =
1

T

∫ T

0

ep(x) dt

‖x‖p =

(∑
K∈Ω

mK |xK |p
)1/p

(32)

where xnum is the numerical solution and xexact is either the exact solution if
available, or a “converged reference solution” computed on a extremely fine
mesh (12800 cells) if not.

The well-balanced property has been verified successfully for two-dimensional
test cases of water at rest, for very large simulation times, in presence of very
irregular topographies and in presence of wet/dry fronts.

4.1. Parabolic bowl
The analytical solution of the one-dimensional shallow water equations

taking into account a linear friction term and a parabolic bottom elevation
has been derived by Sampson [49], following the work of Thacker [50]. The
solution presents a flat surface dynamics with wet/dry fronts decaying over
time because of the friction. It is a famous test case for shallow water nu-
merical solvers, see e.g. [13, 39, 51, 52, 53].
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In a parabolic bowl such that zb(x) = h0(x/a)2, the solution writes:

η(x, t) = h0 +
a

2
B

2
e−τt

8g2h0

(
−sτ sin 2st+

(
τ 2

4
− s2

)
cos 2st

)
−B

2e−τt

4g
− e−τt/2

g

(
Bs cos st+

τB

2
sin st

)
x

u(x, t) = Be−τt/2 sin st

(33)

with p =
√

8gh0/a and s =
√
p2 − τ 2/2 (and then valid if p > τ). Con-

sidering a computational domain lenght lx = 10000 m, the classic set of
parameters is: 

h0 = 10 m
a = 3000 m
B = 5 m.s−1

τ = 0.001 s−1

(34)

We plot in Fig.4 and give in Tab.1 the computed error norms eT1 (h) using
this classic set of parameters (34). A cut-off water depth hε ∈ [10−8, 10−10]
and the Barth limiter for the MUSCL reconstructions were used to find a
proper convergence behavior. Results show that the moving wet-dry fronts
are well captured.

Euler RK-SSP2 IMEX-SSP(3,2,2)
3200 7.89 10−4 - 2.01 10−5 - 1.06 10−5 -
6400 3.92 10−4 1.01 8.89 10−6 1.18 3.35 10−6 1.66
12800 1.95 10−4 1.01 4.17 10−6 1.09 1.09 10−6 1.62
25600 9.73 10−5 1.00 2.01 10−6 1.05 3.72 10−7 1.55
51200 4.86 10−5 1.00 9.90 10−7 1.02 1.35 10−7 1.46

Table 1: Parabolic bowl test case: relative error norms eT1 (h) and associated
convergence rates.

While the cells number is lower than 1000, we do not observe any signifi-
cant difference between the two time stepping methods despite the fact that
the RK-SSP2 is first-order and the IMEX-SSP(3,2,2) second-order. That
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Figure 4: Parabolic bowl test case with the set of parameters (34): relative
error norms eT1 (h) vs number of cells.
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means that the spatial consistency error is much greater than the time con-
sistency error in this mesh size range. The order of convergence is about
1.5 and not 2 due to the presence of the two moving wet/dry fronts intro-
ducing singularities in the solution. Let us note that the relative error norm
eT1 (h) ' 2.5 10−3 for a cells number of 100, which is approximatively the
same as the one presented in [39].
Next, if the number of cells is larger than 1000, computations show a sig-
nificant asymptotic difference between the two time stepping methods. The
numerical solver with the RK-SSP2 time stepping method is clearly first-
order accurate while a convergence rate upper than one is hold if using the
IMEX-SSP(3,2,2) time stepping method.

In conclusion, this test case widely presented in the literature is interesting
to assess the numerical solver robustness in presence of dynamic wet/dry
fronts, nevertheless it is insufficient to be completely relevant. The correct
asymptotic convergence rate is obtained for very large mesh sizes and the
singularities at the wet/dry fronts cannot guarantee to compute it precisely.
The friction source term is linear and it do not correspond to the original
model where the Manning-Strickler friction term is non-linear.

4.2. Dam breaks
The numerical solver behavior is investigated for dam break test cases

with a non zero slope and taking into account the non-linear Manning-
Strickler friction source term. In a first test case, a regular test case is
considered eliminating all eventual singularities in the solution in order to
find the right convergence rate. In a second test case, a dynamic wet/dry
front is considered in order to mainly check the schemes robustness to deal
with.

4.2.1. Regularized dam break
A regularized one-dimensional dam break test case is performed in the

sense that all eventual singularities in the solution are eliminated by con-
struction. The following initial condition is considered:{

zb(x) = 0.5 e−(x− lx/2)2 /2σ2

h(x, t = 0) = 0.1 + 0.5 e−(x− lx/2)2 /2σ2 (35)

with σ = 100 m, a computational domain lenght lx = 1000 m, a Manning-
Strickler roughness coefficient n = 0.05, a gravitational acceleration g =
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10 m.s−1 and a simulation time t = 100 s. A reference simulation (computed
on an extremely small grid and considered as exact) is first performed with
a mesh of 12800 cells. Initial condition and converged results for the water
depth h and the 1d discharge q are plotted in Fig.5. We can indeed see
that there is no singularity in the initial condition (two centered gaussians),
nor at boundary conditions and nor in the final solution (no hydraulic jump
is generated). Let us note that the parameters are suitable in the present
context of hydraulic. The topography gradient is chosen not constant in
order to avoid an exact topography gradient computation.
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Figure 5: Regularized dam break test case: half-domain initial condition,
reference simulations for h and q using a 12800 cells mesh and simulation
with a 25 cells mesh.

The computed relative error norms e1(h) and e1(q) plotted in the Fig.6
and given in Tab.2 give very clear convergence rates. The RK-SSP2 time
stepping method is only first-order accurate with an enhanced accuracy in
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comparison with the first-order method in space and time. About the IMEX-
SSP(3,2,2) time stepping method, a second-order rate of convergence is found
for the water depth h and the 1d discharge q. As a consequence, the rela-
tive error norms become very small even for very coarse meshes. This test
demonstrates the global second-order accuracy of the presented well-balanced
numerical solver (based on MUSCL reconstructions, an appropriate limita-
tion and the IMEX-SSP(3,2,2) time stepping method to implicit the friction
source term).
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Figure 6: Regularized dam break test case: relative error norms e1(h) and
e1(q) vs the number of cells.

4.2.2. Idealized dam break with wet/dry front
The idealized dam break test case on a constant bottom slope and in-

volving a dynamic wet/dry front is now investigated, see Fig.7. It allows to
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Euler RK-SSP2 IMEX-SSP(3,2,2)
800 4.420 10−3 - 1.182 10−3 - 1.783 10−5 -
1600 2.213 10−3 1.00 5.930 10−4 1.00 4.393 10−6 2.02
3200 1.107 10−3 1.00 2.971 10−4 1.00 1.046 10−6 2.07

Table 2: Regularized dam break test case: relative error norms e1(h) and
associated convergence rates.

verify the numerical solver stability in presence of a dynamic wet/dry front
taking into account the non-linear Manning-Strickler friction law.

Figure 7: Idealized dam break test case sketch.

The parameters used are: a computational domain length lx = 1000 m
with wall boundaries on each side, a slope s = 0.5 %, an uniform Manning-
Strickler roughness coefficient n = 0.05, a gravity acceleration g = 10 m.s−1

and a simulation time t = 500 s. The initial water column has a length
L = 50 m and a height H = 5 m, see Fig.7. Since no analytical solution is
known, a reference solution (computed on an extremely fine grid and consid-
ered as exact) is obtained by refining the mesh up to 12800 cells, see the Fig.
8. After the initial simulation time, a rarefaction wave goes upstream and
interacts with the left wall boundary while a shock wave goes downstream,
both modifying the initial water column shape. After a sufficient simula-
tion time, the water column completely disappears and the new water shape
exhibits more mass and stronger gradients downstream.

The dynamic wet/dry front is robustly captured by the well-balanced first
and second-order schemes without any cut-off water depth hε (despite the fact
that the well-balanced property is needless for this test case). The numerical
solutions remain strictly positive; the numerical schemes do not generate any
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Figure 8: Idealized dam break test case: reference solutions for h and q with
12800 cells mesh and computed ones with a 20 cells mesh (a wall boundary
condition has been considered at right and be carefull that the slope is not
represented as sketched in the Fig.7).
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negative water depth (using the MP limiter for the MUSCL reconstructions
was found sufficient in this case). The asymptotic rate of convergence of the
norm e1(h), see Fig. 9 and Tab.3, is as expected, equal to1 (if using the first-
order schemes in space and time). This rate of convergence remains equal to
1, but with a better accuracy, if using the RK-SSP2 time stepping method
with a second-order spatial accuracy (this is similar to the results obtained
for the parabolic bowl 4.1 and the regularized dam break test case 4.2.1).

Using the IMEX-SSP(3,2,2) time stepping method, the accuracy is better,
and the asymptotic convergence rate is a bit greater than 1. This loss of the
optimal order of 2 is due to the (severe) singularity in the solution at wet/dry
front.

The same idealized dam break test case has been performed but changing
the initial water column height at H = 1 m. Hence with the water depth
closer to the local bottom variation, the schemes behavior described above
are enhanced: the second order schemes are more accurate compared to the
first order ones (the numerical results are not plotted here).
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Figure 9: Idealized dam break test case: relative error norms e1(h) for the
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Euler RK-SSP2 IMEX-SSP(3,2,2)
640 6.374 10−3 - 2.228 10−3 - 2.623 10−4 -
1280 3.067 10−3 1.06 1.098 10−3 1.02 1.177 10−4 1.16
2560 1.506 10−3 1.02 5.405 10−4 1.02 5.228 10−5 1.17

Table 3: Idealized dam break test case: relative error norms e1(h) and asso-
ciated convergence rates.

4.3. Channel flow with real-like bathymetry: topography-grid adequacy
We consider a one-dimensional open-channel flow benchmark with a “geophysical-

like” topography. From a channel with a constant slope, topography vari-
ations are added with gradually increasing frequencies. The goal is to de-
termine the minimal cell number required for each topography to retrieve a
correct convergence behavior (in this simple 1d case). In other words, given
the highest frequency in the topography, how many cells are needed to obtain
an accurate solution. (Observe that frequencies with an amplitude substan-
tially smaller than the water height are irrelevant in a hydraulic point of
view). The numerical solver with the first-order schemes in space and time
is compared to the one using the MUSCL reconstructions in space and the
IMEX-SSP(3,2,2) time stepping method.

The initial channel length is lx = 10000 m and the slope s = 0, 25 %; it is
a typical value of main bed river slopes. The local topography perturbations
are introduced as follows:

zb = zb +

np∑
i=1

0.25 sin

(
2π

(
pi x

lx
+ ri

))
with ri ∈ [0, 1] (36)

We consider 5 cases: np = 2, 3, 4, 5, 6 with pi = 7, 24, 57, 108, 205, 402.
The other parameters are a Manning-Strickler roughness coefficient n =

0.05, a 1d discharge q = 1 m2/s imposed at inflow and a gravitational accel-
eration g = 10 m.s−1.

Since the exact solution for the constant slope case is h = 1 m (and
u = 1 m/s, giving a Froude number of 0.32, the flow is fluvial), the considered
topography perturbations wave amplitude have the same order of magnitude,
see Fig.10. Let us note that the flow respects the shallow hypothesis since the
smallest wavelength equals approximatively 25 h. In order to control the flow
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at boundaries, and especially the backwater curve at inflow, the topography
gradient is kept constant, see Fig.10. The exact water height is imposed
at the outflow according to the boundary condition treatment described in
previous section. The steady-state solution is computed until convergence in
time is reached. The so-called reference solutions are those based on a 12800
cells mesh. It is plotted in Fig.10, the reference solution corresponds to the
np = 6 case with the associated topography. It can be distinguished regular
hydraulic jumps when the local slope becomes sufficiently important to find
a Froude number greater than 1. Between these control sections, the water
surface η is nearly flat, especially when the Froude number is small.
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Figure 10: Open-channel flow with “real” topography: the topography varia-
tions and the computed reference solution with a 12800 cells mesh for np = 6,
see (36).

We plot in Fig.11 the relative error norms e1(h) versus the mesh cell
number per smallest wave lenght for the 5 cases. In order to find a correct
convergence behavior, a minimum of 4 points of discretization for the highest
frequency is needed independently to the lowest other frequencies. Otherwise,
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it is not easy to make the difference between the solutions, with a relative
error around 10 %. If this condition is realized, a second-order convergence
rate is obtained if using the MUSCL reconstructions, the MP limiter and the
IMEX-SSP(3,2,2) time method. (With the RK-SSP2 time-stepping method,
again a first-order convergence rate only is obtained; results are not plotted
here). An another remarkable result is that the curves are very close for the
5 cases if using this scaling for the topography discretization.

In order to compare the first- and second-order schemes, one should look
at the zoom (not in log scale) in Fig.11 corresponding to the really interesting
operating area.

If we want to obtain a relative error of 1 %, a minimum of 25 points of
discretization with the first-order schemes must be used, whereas 5 points of
discretization are sufficient with the second-order schemes. It gives a ratio of
5 (nearly constant for the 5 cases (36)) between the two numerical solvers.

This ratio is approximatively the same for the time computation cost.
However, using more points of discretization reduces the time-step propor-
tionally to the mesh cell size.

In conclusion, the first-order scheme is approximatively five times more
expensive in time computation to find the same accuracy to obtain a relative
error of 1 %.

This ratio is less important for higher error values expected.

This preliminary test gives a basic rule in the 1d case, to respect relevant
ratios between the topography discretization and the mesh size.

5. Leze River : Food Plain Dynamic

In this section, direct flow computations and inverse ones are performed
on the real data case: a portion of the Leze river, south-west of France. Few
comparisons of the flow computed either with the first order scheme or the
second order one are presented. These forward model tests highlight the
high robustness of all schemes elaborated in the present context of a real-like
flood plain dynamics. Also, these comparisons between the first and second
order schemes demonstrate the potential advantages of second order schemes
vs the first order ones. Next, the inverse capabilities of the full model are
shown: sensitivity maps (gradient values spatially distributed) and data as-
similation. Two twin experiments are performed: identification of the friction
coefficient in 6 land covers and the inflow discharge Qin(t). These numerical
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experiments demonstrate the capabilities of the approach, and the resulting
computational software, in a real-like flood plain dynamic context. It fully
assesses the robustness of the whole numerical chain elaborated : accurate,
stable direct solver and gradient in presence of wet-dry front dynamics over
complex topography, sensitivity analysis and calibration processes.

5.1. The river configuration
The Lèze River is a 70 km long river in southwestern of France near

Toulouse. The case presented hereafter is a 2 km long subdomain centered
on the hydrological station of Lezat-sur-Leze. This domain was discretized
with a relatively coarse mesh of 24 632 cells. Topography for this mesh was
computed using data coming from local surveys and Digital Elevation Model.
This interesting real test case presents a complex topography, in particular
the presence of a bridge - where the hydrological station is located - as well
as non flat topography at the upstream an downstream boundaries.
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Figure 12: Leze river topography and mesh (24 632 cells)

The domain boundaries consist in two open boundaries - upstream and
downstream - and wall boundary is applied elsewhere. At the upstream
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boundary an inflow hydrograph (see Fig 13(a)) is imposed; this hydrograph
corresponds to the exceptional event of June 2000. A rating curve is im-
posed at the outflow open boundary (downstream). The Manning-Strickler
coefficients are defined as follows. Two scalar values of n are considered: one
uniform value in the stream-bed and one uniform value elsewhere (i.e. in the
floodplain). The two values of Manning friction parameters are : 0.1 s1/3.m−2

in the stream-bed and 0.05 s1/3.m−2 in the floodplain. These values have been
obtained after a trial-error calibration (i.e. "by hand") leading to a good rep-
resentation of the flow plain dynamics observed during the June 2000 event
(no accurate measurements are available).
The initial condition is set as follows. The whole domain is considered dry,
next it is gradually filled in the stream-bed during two hours ("warm-up pe-
riod") to obtain a realistic initial condition (i.e. the flow state at t = 0).

5.2. Direct model: 1st order vs 2nd order
In the sequel, we denote by "1st order scheme" the Euler / A-well-

balanced finite volume scheme presented (see sections 2.3.1-2.4.2); and by
"2nd order scheme" the RK2 / MUSCL Barth finite volume scheme, A-well-
balanced. In this section, we present few comparisons of the computed flow
obtained using either the first order scheme or the second order one.

At inflow, a feedback control of the ghost cells is employed in order to
compute exactly the prescribed hydrograph (see Section subsubsec:inflow).
The time simulation is T=63 hours; the max CFL number is 0.8 which cor-
responds to 2 880 282 time steps for the 1st order scheme and 2 872 208 time
steps for the 2nd order scheme.

All the results presented here are obtained using a water depth cutoff
hε ≈ 10−15. Again, this demonstrates that the numerical schemes elaborated
above remain stable even while computing wet-dry front dynamics over com-
plex topography.

The Froude number is at maximum equal to 0.3 at flood peak. The CPU
computations times on a : 14 480s (4h, 5ms per dt) for the 1sr order scheme
and 61 588s (17h, 20ms per dt) for the 2nd order scheme. Roughly, the corre-
sponding ratio 4.25 is due to a factor 2 for IMEX and a factor 2 for MUSCL
and limitations.
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As a first test, the hydrograph at outflow Qout obtained by performing the
1st order and 2nd order schemes, are compared in Fig. 13(a). Both scheme
give similar outflow discharges (excepted at t =19h, a maximal discrepancy
of 8% is observed).
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Figure 13: Left : Prescribed hydrograph at inflow (black curve), resulting
outflow hydrographs Qout obtained from the 1st and 2nd order schemes.
Right: Water volume in the computational domain in time (in hours):
V =

∫ T
0

(Qin −Qout) dt obtained from the 1st order and 2nd order schemes.

The net mass balance (total water volume) in the computational domain
is plotted in time in Fig. 13(b). The first order scheme over-estimates the
peak volume by almost a factor of 20% compared to the second order scheme.
This over-estimate of the net mass balance by the 1st order scheme, is due
to an over estimate of the water level in the stream-bed , see Fig. 14 for the
water depth h at the three "stations" and see Fig. 15 for water levels at two
cross-sections. Also, the first order scheme gives slightly lower velocities in
the stream-bed than those obtained using the second order scheme.

If comparing the spatially distributed water depth h at the flood peak
time, both schemes give slightly different flood plain patterns (in particular
downstream the crossing road), see Fig 16.
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Figure 15: Water surface (zb + h) at time t = 26h at Section 1 (Left) and
Section 2 (Right). See the section locations in Fig.16. First and second order
results are plotted.

5.3. Sensitivity analysis maps
In this section, variational sensitivities are performed with respect to

the Manning-Strickler roughness coefficient n and the bathymetry zb. The
forward model employed is the first order Euler / A-well-balanced scheme,
see Section 2.

Boundary conditions are identical as in the previous section: the discharge
is imposed at inflow and a rating curve is imposed at outflow.

First the measurements are generated by the forward model (synthetic
data), next a realistic Gaussian noise is added. For all experiments, the
measurements considered are time-series of water elevation at the (virtual)
stations 1 and 2, see Fig. 17. The water elevation recorded are perturbed
by a random noise of +/− 10cm (representing typical error measurements).
The "station 2" measurements are based on the average of a dozen of cells
values. Similarly the "station 1" measurements are the average of a dozen of
cells values representing a mean cross-section value in the minor bed.

The Manning-Strickler coefficients used to generate the data are defined
by areas; their values are given in Table 4.

The cost function is defined as follows:

j(n, zb) =
∑

time step i

∑
station j

(hi,j − hobsi,j )2
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The sensitivities maps with respect to the Manning coefficient n, Fig.
18(a), and the bathymetry zb, Fig. 18(b), are the corresponding gradient
components for each cell. Recall that these gradient values are spatially dis-
tributed information, fully relative to the observations considered (here water
elevations at stations 1 and 2) and relative to the value of the "computational
point" (i.e. the value of the fields n and zb used in the forward model).
Let us recall that the model output considered are the water elevation at the
two stations 1 and 2 (the cost function j defined above).
The gradient value with respect to the Manning friction coefficient is roughly
2 orders of magnitudes higher than those with respect to the bathymetry.
For a sake of clarity, the sensitivity maps (gradient values) plotted in Fig 14
have been normalized.

The highest sensitivities with respect to the friction coefficient n are down-
stream of the observation location areas. This sensitivity repartition is logical

46



Flow

direction

Flow

direction

1
2

n

1.00E+00

2.51E01

6.31E02

1.58E02

3.98E03

1.00E03

2.51E04

6.31E05

1.58E05

3.98E06

1.00E06

(a) Sensitivity map w.r.t. friction coefficient
n

Flow

direction

Flow

direction

1
2

z
b

1.00E+00

2.51E01

6.31E02

1.58E02

3.98E03

1.00E03

2.51E04

6.31E05

1.58E05

3.98E06

1.00E06

(b) Sensitivity map w.r.t. bathymetry zb
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since the flow is sub-critical everywhere (recall the Froude number is less than
0.3 everywhere).
The dominant sensitivity with respect to the friction coefficient n is in the
stream-bed. One of the consequence is the following. Calibrating the mean
stream-bed roughness coefficient during standard regime (i.e. without over-
flowing) is desirable before calibrating the same flow model but applied to a
flood plain dynamic event.

The highest sensitivities with respect to the bathymetry zb are at the ob-
servation location areas. This is logical. The bathymetry sensitivity pattern
is globally comparable to the friction sensitivity one but the bathymetry
sensitivity pattern is more point-wise, less diffused. This remark corrobo-
rates the analyses presented in [23] (sensitivities performed on the linearized
steady-state system around an uniform flow): the bathymetry sensitivity is
local (it does not depend on the perturbation surface area) while the friction
sensitivity depends on the perturbation surface area (non-local sensitivity).
In other respect, the similarity between the bathymetry and the friction
coefficient sensitivity global patterns suggest that a simultaneous "blind"
calibration of both quantities (making fit well the model with data) would
not result to an intrinsic model, hence not necessarily predictive. In others
words, these similar patterns illustrate the potential equifinality problem re-
lated to the (topography-friction) pair in the shallow-water equations. The
(topography-friction) pair equifinality problem and the difficulty to infer this
"basal modeling pair" are discussed for example in [54] in the 1d SW con-
text.
Such spatially distributed sensitivity maps can greatly help the hydraulic
modeler to better understand both the hydraulic model (combining the DTM,
the parametrization) and the flow.

48



5.4. Data assimilation, calibration
In this section, two twin experiments are performed: identification of the

friction coefficient in 6 land covers and the inflow discharge Qin(t). The
direct model and the data assimilated (time series of water elevation at two
locations) are the same as previously. These two assimilation experiments
demonstrate the capabilities of the approach and the computational software
in a real-like flood plain dynamic context, and the robustness of the whole
numerical chain elaborated (robust direct solver and gradient, in presence of
wet-dry front dynamics over complex topography).

5.4.1. Roughness coefficient identification
The twin experiment performed aims at identifying the Manning-Strickler

coefficient values n for each land cover, see Fig. 19(a).
The entire stream-bed corresponds to one land cover, while the compu-

tational flood plain domain is divided into the five land covers. The forward
model is strictly the same as the previous one (those used for the sensitivity
analyses): the observations are water elevations measured at the two vir-
tual stations. All the boundary conditions (inflow discharge, outflow law)
and input parameters (friction coefficients) are the same as previously. The
first guess values were arbitrarily defined as twice or half the target values
(depending on the target value), see Table 4. If considering perfect observa-
tions (no noise introduced), then the target values are perfectly recovered. If
the observations are perturbed by a +/− 10cm Gaussian noise, the friction
coefficients identified are still good, they are presented in Table 4.

Land cover # first guess identified target
1 (stream-bed) 0.10 0.0521 0.05
2 (flood plain) 0.06 0.0378 0.03
3 (flood plain) 0.08 0.0550 0.04
4 (flood plain) 0.05 0.1436 0.10
5 (flood plain) 0.14 0.0548 0.07
6 (flood plain) 0.10 0.0096 0.05

Table 4: The Manning coefficient values n identified per land cover (elevation
measurements include +/− 10cm Gaussion noise).
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minimization iterates. Normalized values.
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An accurate convergence is reached into 32 iterations, see Fig 19(b) (the
stopping criteria have been set extremely small to make decrease as much as
possible the cost function).
Observe that after the 6th iterate, the cost function has almost reached its
minimal value but the control parameters did not converged yet, see Fig.
20(a), excepted the dominating one: the stream-bed friction coefficient (land
cover #1). Next, the gradient computed (accurate and stable even in the
presence of the dynamic wet-dry front, see discussions in the previous sec-
tions), and the robustness of the minimization algorithm employed [47], allow
to retrieved all the target friction values (iterates ≈ 7− 32).

This numerical experiment demonstrates the method capabilities within
a real-like flood plain dynamic context, and the robustness of the whole
numerical chain implemented within DassFlow, [27].

5.4.2. Inflow discharge identification
The twin experiment performed here aims at identifying the inflow hy-

drograph. The forward model is strictly the same as the previous one, with
the friction coefficient set at the values "targets" indicated inTable 4. The
observations generated at the two virtual stations are the same (synthetic
water elevation values plus a gaussian noise with a same amplitude as previ-
ously), and the boundary conditions (inflow discharge, outflow law) are the
same too.
The cost function is defined as follows:

j(Qin) =
∑

time step i

∑
station j

(hi,j − hobsi,j )2 + 10−3 ∗ (Qin −Qfiltered
in )2

The second term in the cost expression is a regularization term (Tykonov
type) aiming at smoothing the control variable Qin computed. The function
Qfiltered
in (t) is defined as an exponential moving average low-pass filter based

on a window size of 4dt (1−0.2)
0.2

.

The target hydrograph, the first guess hydrograph and few intermediate
ones are plotted in Fig. 20(b). The first guess hydrograph was defined by
dividing by two the difference between the peak target value and the baseflow
(10 m3.s−1), plus a phase shift of 4 hours approximatively.
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The convergence curves (the decreasing curves of j and ‖∇j‖) are not
plotted since they are similar than those in Fig. 19(b) : a fast decrease of
j the first 7 iterates then a much slower decrease of j, while the gradient
norm ‖∇j‖ keeps decrease until an accurate convergence is reached at iter-
ate 20. In others words, the target hydrograph is perfectly retrieved by the
minimization process at iterate 20 while it is very close already at iterate 7,
see Fig. 20(b).

This accurate inflow hydrograph identification is due to the very con-
straining data assimilated; the most crucial data set being the time series of
water elevation in the stream-bed. Again, this second numerical experiment
demonstrates the method capability to infer the inflow hydrograph within
a real-like flood plain dynamic, given time series of water elevation at two
(virtual) stations (one inside the stream-bed, and one in the plain).

6. Conclusion

First order and second order finite volume schemes built up from original
combinations of existing methods (Godunov type solvers with MUSCL tech-
nics and an implicit-explicit Runge-Kutta time discretization), completed
with original modifications (in particular at the wet-dry front) have been
elaborated. The resulting numerical schemes have been assessed on classi-
cal benchmarks plus extra new ones representing better the geophysical flow
features and difficulties. A fully second-order accuracy with well-balanced
property is obtained; positiveness and stability are demonstrated in presence
of dynamic wet/dry fronts. An original numerical study analyzing the to-
pography scale - mesh size in terms of accuracy has been conducted (in the
case of a 1d flow channel).
Next, variational sensitivities based on the adjoint of the numerical model,
and the corresponding variational data assimilation process based on a BFGS
type algorithm, has been elaborated in a MPI and automatic differentiation
context. All the know-how and the assessment procedures are exposed. In a
real-like test case (real topography of a flood plain with the inflow discharge
corresponding to a past flood event), some sensitivity maps with respect to
the basal pair (friction,topography) are analyzed. Next, the identification
of the inflow discharge and the friction coefficients (defined by land covers)
are accurately inferred. The observations (water elevation time series at two
virtual stations were synthetic; nevertheless all these numerical tests demon-
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strate the robustness and capabilities of the whole modeling chain (direct
and inverse) in a real-like flood plain context.

The first part of this work have lead to an effective higher-order finite
volume scheme for the 2d shallow-water model with arbitrary topography
and friction term, hence gives a reliable answer to the direct numerical mod-
eling of this type of flows. Note that on unstructured grids, Discontinuous
Galerkin (DG) methods appear as an alternative tool. DG methods open
interesting issues; nevertheless, at the present time, it seems that they do
not reach the same degree of robustness as FV technology yet, especially for
flood plain dynamic applications (which include wet/dry front dynamics).
As regards the prospects, numerical studies aiming at analyzing the topog-
raphy scale - grid adequacy in 2d, would deserve to be pursued; in particular
in the forthcoming context of rich satellite data of surface waters (e.g. the
forthcoming SWOT mission [55]). Also, the innovative sensitivity maps with
respect to the basal (friction,topography) would deserve to be further ana-
lyzed, and employed in operational analyses, in view to better understand
the flow and its complex interactions, the model and its calibration. The goal
being not to be descriptive only, but predictive too. Finally as already men-
tioned, the adjoint method has two main drawbacks: the potentially complex
generation of the adjoint model (in particular in the context of an already
existing operational direct model) and its computational cost (both in terms
of CPU time and memory storage). Nevertheless, we have demonstrated that
if the direct model is designed for variational data assimilation (potentially
based on automatic differentiation), it is possible to derive fully automati-
cally an accurate, reliable and affordable full assimilation chain based on the
adjoint. Furthermore, it has been demonstrated in [56] that in this context,
an incomplete adjoint model, tunable in terms of accuracy and cpu time, can
be easily employed, and leading to a large gain of computational efficiency
with a minimal accuracy loss.

Adjoint code: some fundamental techniques
We present below how the adjoint code is validated, next how to trans-

form the MPI commands of the direct code to the corresponding adjoint
commands; finally a speed-up curve, based on real topography data, demon-
strate the efficiency of the procedure. Let us recall that all the numerical
schemes and algorithms presented in this manuscript have been developed
into DassFlow computational software, [26, 27] (open-source available on-
line).
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Appendix .1. Validation of the adjoint code
We present briefly how the adjoint code (MPI or not) is classically vali-

dated. A gradient test is performed by computing the quantity j(k+εδk)−j(k)
ε

,
ε > 0, small, which should converge to the partial derivative of the cost func-
tion ∂j(k)

∂k
· δk when ε → 0. The finite difference approximation is evaluated

by performing twice the direct code. We set δk to a random vector value,
then we compute the quantity:

I(ε) =
j(k + εδk)− j(k)

ε∂j(k)
∂k
· δk

The computed values of |I(ε)− 1| versus ε are plotted in Fig. .21. Up to the
simple precision, the difference between the gradient computed by the adjoint
code and its first order finite difference approximation (using the direct code
only) converge at order 1 in ε.

Figure .21: Adjoint code validation: the gradient test.

Let us notice that the same convergence curve is obtained while using an
adaptive time step for the forward code (obviously in that case, the same
time grid must be used for for all computations: the two direct wes and the
adjoint we).

Appendix .2. Writing a MPI adjoint code
The direct code, written in Fortran, is implemented using parallel MPI

library. An overlapping strategy is used, see Fig. .22. Since the current
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versions of the automatic differentiation tools, and in particular Tapenade,
does not handle MPI instructions, in order to derive a MPI adjoint code, we
need to re-write "by hand" the equivalent adjoint of the basic MPI subroutine
calls such as MPI_SEND, MPI_RECV or MPI_ALLREDUCE. We follow
the technics described in [57].

Figure .22: Representation of the partitionning (left) of the domain in three
MPI subdomains and its overlapping (right). Each subdomain is extended
to the first line present in neighboring subdomain.

i) Send/Recv.

The Send/Recv MPI subroutines consist in exchanging values between
subdomains through the overlapping zwe, Fig .22, Let us give an example.
Sending an variable a of processor 1 to variable b on processor 2 is equivalent
for processor 2 to do the assignment b = a. The adjoint of this simple
operation is not ab = bb but ab = ab+ bb, bb = 0. Then, as described in [57],
the MPI adjoint of a Send/Recv is shown on Tab. .5.

In the case of MPI_ISEND and MPI_IRECV (non blocking communica-
tions), and if using overlapping, we must be careful if we value is sent to two
different neighbors, see Fig. .23. When performing the backward operation,
we have to recover the two adjoint variables in different temporary variables
that must be added afterwards. Alternatively, in [57] the author uses the
MPI_WAIT subroutine to update the adjoint variable received.

ii) Allreduce (sum).
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Direct MPI code Adjoint MPI code

if (proc == 1) then
call MPI_SEND(a, 2)

else if (proc == 2) then
call MPI_RECV(b, 1)

end if

if (proc == 1) then
call MPI_RECV(temp,2)
ab = ab + temp

else if (proc == 2) then
call MPI_SEND(bb, 1)
bb = 0.

end if

Table .5: Adjoint of a Send/Recv call.

The Allreduce MPI sum subroutine consists in summing all values of a
variable on every processors. In a sequential context, the adjoint consists
to compute each corresponding adjoint instructions, see Tab. .6. Using the
Allreduce MPI sum subroutine, first we must make an Allreduce MPI sum
to unify the global variable value (“a_globb” variable in Tab. .6). Next, the
adjoint of the sum is obtained by adding the global backward variable to the
local we.

iii) Allreduce (min/max).

If trying to differentiate the min (or max) function using Tapenade soft-
ware, first it is transformed as an if instruction. In order to compute the
adjoint of the Allreduce MPI max subroutine, we have to identify the pro-
cessor where the maximum value is reached (during the direct computation),
then update the adjoint value on this processor only. To do so, we use the
MPI_ALLGATHER subroutine that regroup values from every processor in
we vector.

Appendix .3. Speed-up of the full computational process
In order to measure the efficiency of the resulting MPI inverse code

(DassFlow-Shallow software, including the direct code and the adjoint code),
we plot the speed-up curve for sensitivity analysis performed on real data
set: the Lèze river. The curve obtained up to 32 processors is presented in
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Figure .23: Zoom of Fig. .22 with detailed communications for we cell in the
forward context (direct code) and backward context (adjoint code).

Fig. .24. At 32 processors, we obtain 82.5% of the idealistic speed-up. It
illustrates the good operating of the technics described above to obtain the
MPI version of the adjoint instructions.
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