13 research outputs found

    Do legacy effects of deposited fine sediment influence the ecological response of drifting invertebrates to a fine sediment pulse?

    Get PDF
    The deposition of excess fine sediment and clogging of benthic substrates is recognised as a global threat to ecosystem functioning and community dynamics. Legacy effects of previous sedimentation create a habitat template on which subsequent ecological responses occur, and therefore, may have a long-lasting influence on community structure. Our experimental study examined the effects of streambed colmation (representing a legacy effect of fine sediment deposition) and a suspended fine sediment pulse on macroinvertebrate drift and community dynamics. We used 12 outdoor stream mesocosms that were split into two sections of 6.2 m in length (24 mesocosm sections in total). Each mesocosm section contained a coarse bed substrate with clear bed interstices or a fine bed substrate representing a colmated streambed. After 69 days, a fine sediment pulse with three differing fine sediment treatments was applied to the stream mesocosms. Added fine sediment influenced macroinvertebrate movements by lowering benthic density and taxonomic richness and increasing drift density, taxonomic richness, and altering drift assemblages. Our study found the highest dose of sediment addition (an estimated suspended sediment concentration of 1112 mg l caused significant differences in benthic and drift community metrics and drift assemblages compared with the control treatment (30 l of water, no added sediment). Our results indicate a rapid response in drifting macroinvertebrates after stressor application, where ecological impairment varies with the concentration of suspended sediment. Contrary to expectations, bed substrate characteristics had no effect on macroinvertebrate behavioural responses to the fine sediment pulse

    Frequency drift in MR spectroscopy at 3T

    Get PDF
    Purpose: Heating of gradient coils and passive shim components is a common cause of instability in the B-0 field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites.Method: A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson's and intraclass correlation coefficients (ICC).Results: Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p &lt; 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI.Discussion: This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed.</p

    Knowledge of Bovine Tuberculosis, Cattle Husbandry and Dairy Practices amongst Pastoralists and Small-Scale Dairy Farmers in Cameroon

    Get PDF
    BACKGROUND:Control of bovine tuberculosis (bTB) and zoonotic tuberculosis (zTB) has relied upon surveillance and slaughter of infected cattle, milk pasteurisation and public health education. In Cameroon, like many other sub-Saharan African countries, there is limited understanding of current cattle husbandry or milk processing practices or livestock keepers awareness of bTB. This paper describes husbandry and milk processing practices within different Cameroonian cattle keeping communities and bTB awareness in comparison to other infectious diseases. STUDY DESIGN:A population based cross-sectional sample of herdsmen and a questionnaire were used to gather data from pastoralists and dairy farmers in the North West Region and Vina Division of Cameroon. RESULTS:Pastoralists were predominately male Fulanis who had kept cattle for over a decade. Dairy farmers were non-Fulani and nearly half were female. Pastoralists went on transhumance with their cattle and came into contact with other herds and potential wildlife reservoirs of bTB. Dairy farmers housed their cattle and had little contact with other herds or wildlife. Pastoralists were aware of bTB and other infectious diseases such as foot-and-mouth disease and fasciolosis. These pastoralists were also able to identify clinical signs of these diseases. A similar proportion of dairy farmers were aware of bTB but fewer were aware of foot-and-mouth and fasciolosis. In general, dairy farmers were unable to identify any clinical signs for any of these diseases. Importantly most pastoralists and dairy farmers were unaware that bTB could be transmitted to people by consuming milk. CONCLUSIONS:Current cattle husbandry practices make the control of bTB in cattle challenging especially in mobile pastoralist herds. Routine test and slaughter control in dairy herds would be tractable but would have profound impact on dairy farmer livelihoods. Prevention of transmission in milk offers the best approach for human risk mitigation in Cameroon but requires strategies that improved risk awareness amongst producers and consumers

    The hyporheic zone as an invertebrate refuge during a fine sediment disturbance event

    Get PDF
    Subsurface sediments offer an important refuge that support the survival and persistence of river invertebrates during adverse surface conditions. Access to refuges for invertebrates varies with differing hydrological and substrate characteristics, especially the proportion of fine sediment. This study examines whether substrate characteristics influence the use of the hyporheic zone as an invertebrate refuge during a fine sediment disturbance event. We used 12 outdoor stream mesocosms to examine the vertical migration of benthic and hyporheic invertebrates to fine sediment loading. Each mesocosm was filled with coarse or experimentally colmated sediments. After 69 days, a fine sediment pulse of three varying fine sediment concentrations was added to the stream mesocosms. Both before and after the fine sediment pulse, a distinct gradient in the abundance and richness of hyporheic invertebrates was apparent with depth. Hyporheic abundance and taxonomic richness decreased at 5 cm and increased at 18 cm during fine sediment loading, indicating vertical migration of invertebrates from the benthic to hyporheic zone. Our study provides support for the hyporheic zone as a refuge for benthic invertebrates during fine sediment disturbance events. We also found evidence that movement pathways within subsurface sediments were still accessible and permitted bidirectional migration of individuals between the benthic and hyporheic zone in the coarse and colmated sediments during fine sediment loading. Understanding how increased fine sediment deposition affects streambed porosity will be increasingly important with ongoing climate change and anthropogenic sedimentation

    Data on the harmonization of image velocimetry techniques, from six different countries

    No full text
    Here, we present a range of datasets that have been compiled from across six countries in order to facilitate image velocimetry inter-comparison studies. These data have been independently produced for the primarily purposes of: (i) enhancing our understanding of open-channel flows in diverse flow regimes; and (ii) testing specific image velocimetry techniques. These datasets have been acquired across a range of hydro-geomorphic settings, using a diverse range of cameras, encoding software, controller units, and with river velocity measurements generated as a result of differing image pre-processing and image processing software

    Data on the harmonization of image velocimetry techniques, from seven different countries

    No full text
    Here, we present a range of datasets that have been compiled from across seven countries in order to facilitate image velocimetry inter-comparison studies. These data have been independently produced for the primarily purposes of: (i) enhancing our understanding of open-channel flows in diverse flow regimes; and (ii) testing specific image velocimetry techniques. These datasets have been acquired across a range of hydro-geomorphic settings, using a diverse range of cameras, encoding software, controller units, and with river velocity measurements generated as a result of differing image pre-processing and image processing software

    Increase in the use of inhaled nitric oxide in neonatal intensive care units in England: a retrospective population study

    No full text
    Objective To describe temporal changes in inhaled nitric oxide (iNO) use in English neonatal units between 2010 and 2015.Design Retrospective analysis using data extracted from the National Neonatal Research Database.Setting All National Health Service neonatal units in England.Patients Infants of all gestational ages born 2010–2015 admitted to a neonatal unit and received intensive care.Main outcome measures Proportion of infants who received iNO; age at initiation and duration of iNO use.Results 4.9% (6346/129 883) of infants received iNO; 31% (1959/6346) were born &lt;29 weeks, 18% (1152/6346) 29–33 weeks and 51% (3235/6346)&gt;34 weeks of gestation. Between epoch 1 (2010–2011) and epoch 3 (2014–2015), there was (1) an increase in the proportion of infants receiving iNO: &lt;29 weeks (4.9% vs 15.9%); 29–33 weeks (1.1% vs 4.8%); &gt;34 weeks (4.5% vs 5.0%), (2) increase in postnatal age at iNO initiation: &lt;29 weeks 10 days vs 18 days; 29–33 weeks 2 days vs 10 days, (iii) reduction in iNO duration: &lt;29 weeks (3 days vs 2 days); 29–33 weeks (2 days vs 1 day).Conclusions Between 2010 and 2015, there was an increase in the use of iNO among infants admitted to English neonatal units. This was most notable among the most premature infants with an almost fourfold increase. Given the cost of iNO therapy, limited evidence of efficacy in preterm infants and potential for harm, we suggest that exposure to iNO should be limited, ideally to infants included in research studies (either observational or randomised placebo-controlled trial) or within a protocolised pathway. Development of consensus guidelines may also help standardise practice

    Frequency drift in MR spectroscopy at 3T

    No full text
    Purpose: Heating of gradient coils and passive shim components is a common cause of instability in the B-0 field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites. Method: A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson's and intraclass correlation coefficients (ICC). Results: Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p < 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI. Discussion: This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed
    corecore