17 research outputs found
Host-specific gene expression as a tool for introduction success in Naupactus parthenogenetic weevils
Food resource access can mediate establishment success in invasive species, and generalist herbivorous insects are thought to rely on mechanisms of transcriptional plasticity to respond to dietary variation. While asexually reproducing invasives typically have low genetic variation, the twofold reproductive capacity of asexual organisms is a marked advantage for colonization. We studied host-related transcriptional acclimation in parthenogenetic, invasive, and polyphagous weevils: Naupactus cervinus and N. leucoloma. We analyzed patterns of gene expression in three gene categories that can mediate weevil-host plant interactions through identification of suitable host plants, short-term acclimation to host plant defenses, and long-term adaptation to host plant defenses and their pathogens. This approach employed comparative transcriptomic methods to investigate differentially expressed host detection, detoxification, immune defense genes, and pathway-level gene set enrichment. Our results show that weevil gene expression responses can be host plant-specific, and that elements of that response can be maintained in the offspring. Some host plant groups, such as legumes, appear to be more taxing as they elicit a complex gene expression response which is both strong in intensity and specific in identity. However, the weevil response to taxing host plants shares many differentially expressed genes with other stressful situations, such as host plant cultivation conditions and transition to novel host, suggesting that there is an evolutionarily favorable shared gene expression regime for responding to different types of stressful situations. Modulating gene expression in the absence of other avenues for phenotypic adaptation may be an important mechanism of successful colonization for these introduced insects.Fil: Mackay Smith, Ava. Wellesley College; Estados UnidosFil: Dornon, Mary Kate. Wellesley College; Estados UnidosFil: Lucier, Rosalind. Wellesley College; Estados UnidosFil: Okimoto, Anna. Wellesley College; Estados UnidosFil: Sousa, Flavia Mendonca de. Wellesley College; Estados UnidosFil: Rodriguero, Marcela Silvina. Consejo Nacional de Investigaciones CientÃficas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Confalonieri, Viviana Andrea. Consejo Nacional de Investigaciones CientÃficas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Lanteri, Analia Alicia. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División EntomologÃa; ArgentinaFil: Sequeira, Andrea. Wellesley College; Estados Unido
Host-specific gene expression as a tool for introduction success in <i>Naupactus</i> parthenogenetic weevils
Food resource access can mediate establishment success in invasive species, and generalist herbivorous insects are thought to rely on mechanisms of transcriptional plasticity to respond to dietary variation. While asexually reproducing invasives typically have low genetic variation, the twofold reproductive capacity of asexual organisms is a marked advantage for colonization. We studied host-related transcriptional acclimation in parthenogenetic, invasive, and polyphagous weevils: Naupactus cervinus and N. leucoloma. We analyzed patterns of gene expression in three gene categories that can mediate weevil-host plant interactions through identification of suitable host plants, short-term acclimation to host plant defenses, and long-term adaptation to host plant defenses and their pathogens. This approach employed comparative transcriptomic methods to investigate differentially expressed host detection, detoxification, immune defense genes, and pathway-level gene set enrichment. Our results show that weevil gene expression responses can be host plant-specific, and that elements of that response can be transgenerational. Some host plant groups, such as legumes, appear to be more taxing as they elicit a complex gene expression response which is both strong in intensity and specific in identity. However, the weevil response to taxing host plants shares many differentially expressed genes with other stressful situations, such as host plant cultivation conditions and transition to novel host, suggesting that there is an evolutionarily favorable shared gene expression regime for responding to different types of stressful situations. Modulating gene expression in the absence of other avenues for phenotypic adaptation may be an important mechanism of successful colonization for these introduced insects.Facultad de Ciencias Naturales y Muse
The functional and evolutionary impacts of human-specific deletions in conserved elements
[INTRODUCTION] Deciphering the molecular and genetic changes that differentiate humans from our closest primate relatives is critical for understanding our origins. Although earlier studies have prioritized how newly gained genetic sequences or variations have contributed to evolutionary innovation, the role of sequence loss has been less appreciated. Alterations in evolutionary conserved regions that are enriched for biological function could be particularly more likely to have phenotypic effects. We thus sought to identify and characterize sequences that have been conserved across evolution, but are then surprisingly lost in all humans. These human-specific deletions in conserved regions (hCONDELs) may play an important role in uniquely human traits.[RATIONALE] Sequencing advancements have identified millions of genetic changes between chimpanzee and human genomes; however, the functional impacts of the ~1 to 5% difference between our species is largely unknown. hCONDELs are one class of these predominantly noncoding sequence changes. Although large hCONDELs (>1 kb) have been previously identified, the vast majority of all hCONDELs (95.7%) are small (<20 base pairs) and have not yet been functionally assessed. We adapted massively parallel reporter assays (MPRAs) to characterize the effects of thousands of these small hCONDELs and uncovered hundreds with functional effects. By understanding the effects of these hCONDELs, we can gain insight into the mechanistic patterns driving evolution in the human genome.[RESULTS] We identified 10,032 hCONDELs by examining conserved regions across diverse vertebrate genomes and overlapping with confidently annotated, human-specific fixed deletions. We found that these hCONDELs are enriched to delete conserved sequences originating from stem amniotes. Overlap with transcriptional, epigenomic, and phenotypic datasets all implicate neuronal and cognitive functional impacts. We characterized these hCONDELs using MPRA in six different human cell types, including induced pluripotent stem cell–derived neural progenitor cells. We found that 800 hCONDELs displayed species-specific regulatory effect effects. Although many hCONDELs perturb transcription factor–binding sites in active enhancers, we estimate that 30% create or improve binding sites, including activators and repressors.
Some hCONDELs exhibit molecular functions that affect core neurodevelopmental genes. One hCONDEL removes a single base in an active enhancer in the neurogenesis gene HDAC5, and another deletes six bases in an alternative promoter of PPP2CA, a gene that regulates neuronal signaling. We deeply characterized an hCONDEL in a putative regulatory element of LOXL2, a gene that controls neuronal differentiation. Using genome engineering to reintroduce the conserved chimpanzee sequence into human cells, we confirmed that the human deletion alters transcriptional output of LOXL2. Single-cell RNA sequencing of these cells uncovered a cascade of myelination and synaptic function–related transcriptional changes induced by the hCONDEL.[CONCLUSION] Our identification of hundreds of hCONDELs with functional impacts reveals new molecular changes that may have shaped our unique biological lineage. These hCONDELs display predicted functions in a variety of biological systems but are especially enriched for function in neuronal tissue. Many hCONDELs induced gains of regulatory activity, a surprising discovery given that deletions of conserved bases are commonly thought to abrogate function. Our work provides a paradigm for the characterization of nucleotide changes shaping species-specific biology across humans or other animals.This work was supported by the ENCODE Functional Characterization Center (grant UM1 HG009435 to P.C.S., R.T., and S.K.R.); Broad SPARC (P.C.S.); Howard Hughes Medical Institute (P.C.S.); and the National Institutes of Health (grant R00HG010669 to S.K.R., grants R00HG008179 and R35HG011329 to R.T., grant RF1AG065926 to M.F.G. and K.J.B., grant R01MH125246 to M.F.G. and K.J.B., grant R56MH125237 to M.F.G. and K.J.B., grant 5T32MH014276-45 to M.F.G., and grant R01HG008742 to E.K.); the Liweibo PhD scholarship from the University of Massachusetts Chan Medical School (X.L.); and the Distinguished professor award from the Swedish Medical Research Council (K.L.T.).Peer reviewe
Recommended from our members
Vocal learning-associated convergent evolution in mammalian proteins and regulatory elements.
Vocal production learning (vocal learning) is a convergently evolved trait in vertebrates. To identify brain genomic elements associated with mammalian vocal learning, we integrated genomic, anatomical, and neurophysiological data from the Egyptian fruit bat (Rousettus aegyptiacus) with analyses of the genomes of 215 placental mammals. First, we identified a set of proteins evolving more slowly in vocal learners. Then, we discovered a vocal motor cortical region in the Egyptian fruit bat, an emergent vocal learner, and leveraged that knowledge to identify active cis-regulatory elements in the motor cortex of vocal learners. Machine learning methods applied to motor cortex open chromatin revealed 50 enhancers robustly associated with vocal learning whose activity tended to be lower in vocal learners. Our research implicates convergent losses of motor cortex regulatory elements in mammalian vocal learning evolution
Genetically Depauperate and Still Successful: Few Multilocus Genotypes of the Introduced Parthenogenetic Weevil <i>Naupactus cervinus</i> (Coleoptera: Curculionidae) Prevail in the Continental United States
Naupactus cervinus is a parthenogenetic weevil native to South America that is currently distributed worldwide. This flightless species is polyphagous and capable of modifying gene expression regimes for responding to stressful situations. Naupactus cervinus was first reported in the continental United States in 1879 and has rapidly colonized most of the world since. Previous studies suggested that an invader genotype successfully established even in areas of unsuitable environmental conditions. In the present work, we analyze mitochondrial and nuclear sequences from 71 individuals collected in 13 localities across three states in the southern US, in order to describe the genetic diversity in this area of introduction that has not yet been previously studied. Our results suggest that 97% of the samples carry the most prevalent invader genotype already reported, while the rest shows a close mitochondrial derivative. This would support the hypothesis of a general purpose genotype, with parthenogenesis and its associated lack of recombination maintaining the linkage of genetic variants capable of coping with adverse conditions and enlarging its geographical range. However, demographic advantages related to parthenogenetic reproduction as the main driver of geographic expansion (such as the foundation of a population with a single virgin female) cannot be ruled out. Given the historical introduction records and the prevalence of the invader genotype, it is possible that the continental US may act as a secondary source of introductions to other areas. We propose that both the parthenogenesis and scarce genetic variation in places of introduction may, in fact, be an asset that allows N. cervinus to thrive across a range of environmental conditions
Direct characterization of cis-regulatory elements and functional dissection of complex genetic associations using HCR-FlowFISH.
Effective interpretation of genome function and genetic variation requires a shift from epigenetic mapping of cis-regulatory elements (CREs) to characterization of endogenous function. We developed hybridization chain reaction fluorescence in situ hybridization coupled with flow cytometry (HCR-FlowFISH), a broadly applicable approach to characterize CRISPR-perturbed CREs via accurate quantification of native transcripts, alongside CRISPR activity screen analysis (CASA), a hierarchical Bayesian model to quantify CRE activity. Across \u3e325,000 perturbations, we provide evidence that CREs can regulate multiple genes, skip over the nearest gene and display activating and/or silencing effects. At the cholesterol-level-associated FADS locus, we combine endogenous screens with reporter assays to exhaustively characterize multiple genome-wide association signals, functionally nominate causal variants and, importantly, identify their target genes
The functional and evolutionary impacts of human-specific deletions in conserved elements.
Conserved genomic sequences disrupted in humans may underlie uniquely human phenotypic traits. We identified and characterized 10,032 human-specific conserved deletions (hCONDELs). These short (average 2.56 base pairs) deletions are enriched for human brain functions across genetic, epigenomic, and transcriptomic datasets. Using massively parallel reporter assays in six cell types, we discovered 800 hCONDELs conferring significant differences in regulatory activity, half of which enhance rather than disrupt regulatory function. We highlight several hCONDELs with putative human-specific effects on brain development, includin
Recommended from our members
The functional and evolutionary impacts of human-specific deletions in conserved elements
Conserved genomic sequences disrupted in humans may underlie uniquely human phenotypic traits. We identified and characterized 10,032 human-specific conserved deletions (hCONDELs). These short (average 2.56 base pairs) deletions are enriched for human brain functions across genetic, epigenomic, and transcriptomic datasets. Using massively parallel reporter assays in six cell types, we discovered 800 hCONDELs conferring significant differences in regulatory activity, half of which enhance rather than disrupt regulatory function. We highlight several hCONDELs with putative human-specific effects on brain development, including HDAC5, CPEB4, and PPP2CA. Reverting an hCONDEL to the ancestral sequence alters the expression of LOXL2 and developmental genes involved in myelination and synaptic function. Our data provide a rich resource to investigate the evolutionary mechanisms driving new traits in humans and other species
Recommended from our members
Three-dimensional genome rewiring in loci with human accelerated regions
Human accelerated regions (HARs) are conserved genomic loci that evolved at an accelerated rate in the human lineage and may underlie human-specific traits. We generated HARs and chimpanzee accelerated regions with an automated pipeline and an alignment of 241 mammalian genomes. Combining deep learning with chromatin capture experiments in human and chimpanzee neural progenitor cells, we discovered a significant enrichment of HARs in topologically associating domains containing human-specific genomic variants that change three-dimensional (3D) genome organization. Differential gene expression between humans and chimpanzees at these loci suggests rewiring of regulatory interactions between HARs and neurodevelopmental genes. Thus, comparative genomics together with models of 3D genome folding revealed enhancer hijacking as an explanation for the rapid evolution of HARs
Recommended from our members
The contribution of historical processes to contemporary extinction risk in placental mammals
Species persistence can be influenced by the amount, type, and distribution of diversity across the genome, suggesting a potential relationship between historical demography and resilience. In this study, we surveyed genetic variation across single genomes of 240 mammals that compose the Zoonomia alignment to evaluate how historical effective population size (Ne) affects heterozygosity and deleterious genetic load and how these factors may contribute to extinction risk. We find that species with smaller historical Ne carry a proportionally larger burden of deleterious alleles owing to long-term accumulation and fixation of genetic load and have a higher risk of extinction. This suggests that historical demography can inform contemporary resilience. Models that included genomic data were predictive of species' conservation status, suggesting that, in the absence of adequate census or ecological data, genomic information may provide an initial risk assessment