34 research outputs found

    The role of food and nutrition in the prevention and pathogenesis of hypertension

    Get PDF
    INTRODUCTION Arterial hypertension belongs to lifestyle diseases that are largely associated with abnormal lifestyle. Based on the results of the population research factors have been identified that increase the risk of hypertension, including: obesity, low physical activity, excessive alkohol consumption, use of diet rich in sodium and low in potassium, too low magnesium and calcium content in food and chronic stres. OBJECTIVE The purpose of this article is to present the role of food and nutrition in the prevention and pathogenesis of hypertension. THE WEIGHT OF THE BODCIES The influence of dietary intervention on blood pressure in patients with normal and high blood pressure was the subject of clinical tests [6,7]. The Dietary Approaches to Stop Hypertension (DASH) study involved a diet that promoted the intake of vegetables, fruits and small amounts of dairy products, contained whole grain cereals, fish, poultry and nuts, while limiting the amount of red meat in the diet, sweetness and sweetened beverages. SUMMARY The DASH diet more effectively reduced the systolic and diastolic blood pressure both in hypertensive patients and those with normal pressure values. Following the low-sodium DASH diet is important in the strategy of prophylaxis and treatment of hypertension and related to that coronary heart disease, both at the population level and in dealing with individual patients

    Sensory Integration - the weight of stimuli. The role of parents

    Get PDF
    INTRODUCTION Sensory integration is a kind of integration or organization of stimuli, the ability to feel and respond properly to news from the world. The organization of stimuli takes place in the brain so that later can use them to create appropriate reactions and behaviors. If the flow of stimuli is disturbed then some reactions, the body's response may be incorrect. OBJECTIVE The purpose of this article is to present in a understandable way the sensory integration process and the impact of various stimuli on its condition. It also shows how important parents play in the development and therapy of children with sensory integration disorders. THE WEIGHT OF THE BODCIES The stimuli is food that absorbs our brain through every organ of our body. We are what we eat, that is why, it is so important what we feed our children's brain. Impulses reach the body thanks to the senses: sight, hearing, taste, smell, touch and proprioceptive, atrial and interoceptive. SUMMARY Sensory integration is the whole of reactions that take place between the outside world and our body. The most important and the most intense time of physical and mental development is childhood during which we provide our body with the most stimuli. For children with sensory integration disorders and without these disorders, the best therapists are parents

    Checklists for Applicants submitting dossiers on Cosmetic Ingredients to be evaluated by the SCCS

    Get PDF
    Checklists for Applicants submitting dossiers on Cosmetic Ingredients to be evaluated by the SCCSThe SCCS adopted these Checklists on 07 March 2017Checklists for Applicants submitting dossiers on Cosmetic Ingredients to be evaluated by the SCCSThe SCCS adopted these Checklists on 07 March 201

    Improving quality in nanoparticle-induced cytotoxicity testing by a tiered inter-laboratory comparison study

    Get PDF
    The quality and relevance of nanosafety studies constitute major challenges to ensure their key role as a supporting tool in sustainable innovation, and subsequent competitive economic advantage. However, the number of apparently contradictory and inconclusive research results has increased in the past few years, indicating the need to introduce harmonized protocols and good practices in the nanosafety research community. Therefore, we aimed to evaluate if best-practice training and inter-laboratory comparison (ILC) of performance of the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay for the cytotoxicity assessment of nanomaterials among 15 European laboratories can improve quality in nanosafety testing. We used two well-described model nanoparticles, 40-nm carboxylated polystyrene (PS-COOH) and 50-nm amino-modified polystyrene (PS-NH2). We followed a tiered approach using well-developed standard operating procedures (SOPs) and sharing the same cells, serum and nanoparticles. We started with determination of the cell growth rate (tier 1), followed by a method transfer phase, in which all laboratories performed the first ILC on the MTS assay (tier 2). Based on the outcome of tier 2 and a survey of laboratory practices, specific training was organized, and the MTS assay SOP was refined. This led to largely improved intra- and inter-laboratory reproducibility in tier 3. In addition, we confirmed that PS-COOH and PS-NH2 are suitable negative and positive control nanoparticles, respectively, to evaluate impact of nanomaterials on cell viability using the MTS assay. Overall, we have demonstrated that the tiered process followed here, with the use of SOPs and representative control nanomaterials, is necessary and makes it possible to achieve good inter-laboratory reproducibility, and therefore high-quality nanotoxicological data.Web of Science108art. no. 143

    Interlaboratory comparison study of the Colony Forming Efficiency assay for assessing cytotoxicity of nanomaterials

    Get PDF
    Nanotechnology has gained importance in the past years as it provides opportunities for industrial growth and innovation. However, the increasing use of manufactured nanomaterials (NMs) in a number of commercial applications and consumer products raises also safety concerns and questions regarding potential unintended risks to humans and the environment. Since several years the European Commission’s Joint Research Centre (JRC) is putting effort in the development, optimisation and harmonisation of in vitro test methods suitable for screening and hazard assessment of NMs. Work is done in collaboration with international partners, in particular the Organisation for Economic Co-operation and Development (OECD). This report presents the results from an interlaboratory comparison study of the in vitro Colony Forming Efficiency (CFE) cytotoxicity assay performed in the frame of OECD's Working Party of Manufactured Nanomaterials (WPMN). Twelve laboratories from European Commission, France, Italy, Japan, Poland, Republic of Korea, South Africa and Switzerland participated in the study coordinated by JRC. The results show that the CFE assay is a suitable and robust in vitro method to assess cytotoxicity of NMs. The assay protocol is well defined and is easily and reliably transferable to other laboratories. The results obtained show good intra and interlaboratory reproducibility of the assay for both the positive control and the tested nanomaterials. In conclusion the CFE assay can be recommended as a building block of an in vitro testing battery for NMs toxicity assessment. It could be used as a first choice method to define dose-effect relationships for other in vitro assays.JRC.I.4-Nanobioscience

    The effects of 1-methylnaphthalene after inhalation exposure on the serum corticosterone levels in rats

    No full text
    ObjectivesThis paper reports on the trend of the stressogenic stimulus caused by a repeated exposure to 1-methylnaphthalene (1-MN) vapors at the nominal concentrations of 0 mg/m3 (the control restrainer), 50 mg/m3 or 200 mg/m3 in the nose-only inhalation system, by analyzing the serum corticosterone (CORT) levels in rats.Material and MethodsThree groups of rats were exposed in restrainers to 1-MN vapors at the nominal concentrations of 0 mg/m3, 50 mg/m3 or 200 mg/m3 for 5 days. One control group of animals spent all the time during the experiment in an individually ventilated plastic cage. The serum CORT concentrations were determined in all 4 groups of the rats. The blood samples drawn from the tail vein were collected every day after termination of the 6-h exposure. On the fifth day, blood samples were collected 15 min, 30 min, 45 min, 1 h, and 3 h after termination of the 6-h exposure.ResultsOn the fifth day of the study, no statistically significant changes in body weights between all groups of animals were found. After 5 days of the observation, increased food intake in the control groups was noted. Significantly higher CORT concentrations in the rats exposed to 1-MN at 200 mg/m3 and in the animals from the control restrainer were found, comparing to the animals exposed to 1-MN at 50 mg/m3 and the animals from the control cage.ConclusionsThe application of 6-h restraining induced high concentrations of the stress hormone, CORT, in the blood of rats. The short-term exposure of rats to 1-MN non-linearly reduced the restraint stress measured with CORT concentration

    The use of LA-ICP-MS as an auxiliary tool to assess the pulmonary toxicity of molybdenum(IV) sulfide (MoS<sub>2</sub>) nano- and microparticles

    No full text
    Objectives Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has considerable applicative potential for both qualitative and quantitative analyses of elemental spatial distribution and concentration. It provides high resolutions at pg-level detection limits. These qualities make it very useful for analyzing biological samples. The present study responds to the growing demand for adequate analytical methods which would allow to assess the distribution of nanostructured molybdenum(IV) disulfide (MoS₂) in organs. It was also motivated by an apparent lack of literature on the biological effects of MoS₂ in living organisms. The study was aimed at using LA-ICP-MS for comparing micro- and nanosized MoS2 ditribution in selected rat tissue samples (lung, liver, brain and spleen tissues) after the intratracheal instillation (7 administrations) of MoS₂ nano- and microparticles vs. controls. Material and Methods The experimental study, approved by the Ethics Committee for Animal Experiments was performed using albino Wistar rats. This was performed at 2-week intervals at a dose of 5 mg/kg b.w., followed by an analysis after 90 days of exposure. The MoS₂ levels in control tissues were determined with the laser ablation system at optimized operating conditions. The parameter optimization process for the LA system was conducted using The National Institute of Standards and Technology (NIST) glass standard reference materials. Results Instrument parameters were optimized. The study found that molybdenum (Mo) levels in the lungs of microparticle-exposed rats were higher compared to nanoparticle-exposed rats. The opposite results were found for liver and spleen tissues. Brain Mo concentrations were below the detection limit. Conclusions The LA-ICP-MS technique may be used as an important tool for visualizing the distribution of Mo on the surface of soft samples through quantitative and qualitative elemental mapping

    Biological effects of molybdenum compounds in nanosized forms under in vitro and in vivo conditions

    No full text
    Nanoparticles of transition metal dichalcogenides, particularly of molybdenum (Mo), have gained a lot of focus due to their exceptional physicochemical properties and the growing number of technological applications. These nanoparticles are also considered as potential therapeutic tools, biosensors or drug carriers. It is crucial to thoroughly examine their biocompatibility and ensure safe usage. The aim of this review is to analyze the available data on the biological effects of different nanoforms of elemental Mo and its compounds. In the reviewed publications, different conditions were described, including different experimental models, examined nanoforms, and their used concentrations. Due to these differences, the results are rather difficult to compare. Various studies classify Mo related nanomaterials as very toxic, mildly toxic or non-toxic. Similarly, the mechanisms of toxicity proposed in some studies are different, including oxidative stress induction, physical membrane disruption or DNA damage. Quite promising, however, are the potential medical applications of MoS2 nanoparticles in therapy of cancer and Alzheimer’s disease. Further studies on biocompatibility of nanomaterials based on Mo compounds are warranted

    The use of LA-ICP-MS as an auxiliary tool to assess the pulmonary toxicity of molybdenum(IV) sulfide (MoS 2 ) nano- and microparticles

    No full text
    Objectives Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has considerable applicative potential for both qualitative and quantitative analyses of elemental spatial distribution and concentration. It provides high resolutions at pg-level detection limits. These qualities make it very useful for analyzing biological samples. The present study responds to the growing demand for adequate analytical methods which would allow to assess the distribution of nanostructured molybdenum(IV) disulfide (MoS 2 ) in organs. It was also motivated by an apparent lack of literature on the biological effects of MoS 2 in living organisms. The study was aimed at using LA-ICP-MS for comparing micro- and nanosized MoS 2 ditribution in selected rat tissue samples (lung, liver, brain and spleen tissues) after the intratracheal instillation (7 administrations) of MoS 2 nano- and microparticles vs. controls. Material and Methods The experimental study, approved by the Ethics Committee for Animal Experiments was performed using albino Wistar rats. This was performed at 2-week intervals at a dose of 5 mg/kg b.w., followed by an analysis after 90 days of exposure. The MoS 2 levels in control tissues were determined with the laser ablation system at optimized operating conditions. The parameter optimization process for the LA system was conducted using The National Institute of Standards and Technology (NIST) glass standard reference materials. Results Instrument parameters were optimized. The study found that molybdenum (Mo) levels in the lungs of microparticle-exposed rats were higher compared to nanoparticle-exposed rats. The opposite results were found for liver and spleen tissues. Brain Mo concentrations were below the detection limit. Conclusions The LA-ICP-MS technique may be used as an important tool for visualizing the distribution of Mo on the surface of soft samples through quantitative and qualitative elemental mapping. Int J Occup Med Environ Health. 2024;37(1):18–3

    Porównawcze badanie bezpieczeństwa (ostra toksyczność ogólnoustrojowa u myszy) dwóch materiałów przygotowanych z dzianiny/plecionki polipropylenowo-poliestrowej (Codubix S) oraz żywicy akrylowej (Mendec Cranio) wykorzystywanych do produkcji protez

    No full text
    The aim of the study was a comparison of the acute toxicity of two popular prostheses used in the reconstruction of the bones of the skull. For the tests, the following materials were used: a polypropylene-polyester knitted Codubix S cranial bone prosthesis, made by TRICOMED SA, and polymethyl methacrylate Mednec Cranio resin. The tests were carried out in accordance with the following standards – PN-EN ISO 10993-11:2009 Biological evaluation of medical devices - Part 11: Tests for systemic toxicity, and PN-EN ISO 10993-12:2012 Biological evaluation of medical devices – Part 12: Sample preparation and reference materials. During the evaluation, adult male and female Balb/c mice were used. The animals were injected intravenously using extracts of both materials in 0.9% NaCl and intraperitoneally with the same extracts in sesame oil. The tests lasted 7 days, during which the health of the animals and their behavior were assessed. Both in the control and test groups, there was no mortality of the animals, and the health and behaviour of mice were unchanged when compared with the normal. After 7 days the internal organs of the chest and abdominal cavity of the animals were subjected to macroscopic pathomorphological examination, during which no changes indicating the toxic action of Codubix S and Mednec Cranio resin were found. Before the acute systemic toxicity tests, the chemical purity of both implants was assessed. The chemical purity of a product is one of the factors determining its biological properties. A product which is characterised by a higher degree of chemical purity contains fewer substances which may have a negative impact on biological reactions. Both prostheses meet the requirements of purity for medical devices.Celem badania było porównanie toksyczności ostrej dwóch popularnych protez stosowanych w konstrukcji kości czaszki. Do badań użyto następujących materiałów: dzianiny polipropylenowo-poliestrowej Codubix S firmy TRICOMEX SA. I polimetakrylanu metylu Mednec Cranio. Badania przeprowadzono zgodnie z następującymi normami PN-EN ISO 10993-11: 2009 Biologiczna ocena wyrobów medycznych. Część 11: Badania toksyczności systemowej i PN-EN ISO 10993-12: 2012 Biologiczna ocena wyrobów medycznych Część 12: Przygotowanie próbek i materiały referencyjne. Podczas oceny wykorzystano dorosłe samce i samice myszy Balb /c. Zwierzętom wstrzyknięto: dożylnie stosując ekstrakty obu materiałów w 0,9% NaCl i dootrzewnowo z tymi samymi ekstraktami w oleju sezamowym. Testy trwały 7 dni, podczas których oceniano zdrowie zwierząt i ich zachowanie. Zarówno w grupach kontrolnych, jak i testowych nie stwierdzono śmiertelności zwierząt, zdrowie i zachowanie myszy pozostały nie zmienione w porównaniu ze zwykłymi. Po 7 dniach narządy wewnętrzne klatki piersiowej i jamy brzuszne j zwierząt poddano makroskopowemu badaniu patomorfologicznemu, podczas którego nie stwierdzono zmian wskazujących na toksyczne działanie żywicy Codubix S i Mednec Cranio. Przed badaniami ostrej toksyczności ogólnoustrojowej oceniano czystość chemiczną obu implantów. Chemiczna czystość produktu jest jednym z czynników określających jego właściwości biologiczne. Produkt, który charakteryzuje się wyższym stopniem czystości chemicznej, zawiera mniej substancji, które mogą mieć negatywny wpływ na reakcje biologiczne. Obie protezy spełniają wymagania czystości dla wyrobów medycznych
    corecore