1,950 research outputs found

    Asymptotic residual stresses in butt-welded joints under fatigue loading

    Get PDF
    If a weld toe is modelled as a sharp V-notch angle, the stress distribution near the notch tip is singular. Its intensity can then be quantified by means of Notch Stress Intensity Factors (NSIF), which have been proven to be capable of summarising the high-cycle fatigue strength of welded joints having very different global and local geometries. In presence of a singular residual stress field near the weld toe, the local load ratio is modified making the fatigue strength sensitive to residual stresses in the high-cycle regime. However, for an accurate estimation of the fatigue performance of welded joints, it is necessary to consider not only the initial residual stress field but also its variation under load, as both of these may play an important role. In this work the effect of fatigue loading on the asymptotic residual stress redistribution near the weld toe of a butt-welded joint is studied by means of numerical simulations. A model is then proposed to estimate the influence of residual stresses on the fatigue strength of welded joints. Experimental results taken from the literature were found in good agreement with those predicted by the proposed model

    Experimental characterisation of fatigue crack growth based on the CTOD measured from crack tip displacement fields using DIC

    Get PDF
    The current work presents an experimental study on the use of the crack tip opening displacement (CTOD) to evaluate its ability to characterise fatigue crack growth. A methodology is developed to measure and to analyse the CTOD from experimental data. The vertical displacements obtained by implementing digital image correlation (DIC) on growing fatigue cracks are used to measure the CTOD. Two fatigue tests at stress ratios of 0.1 and 0.6 were conducted on compact tension (CT) specimens manufactured from a 1 mm thick sheet of commercially pure titanium. A sensitivity analysis to explore the effect of the position selected behind the crack tip for the CTOD measurement was performed. The analysis of a full loading cycle allowed identifying the elastic and plastic components of the CTOD. The plastic CTOD was found to be directly related to the nonlinear zone (i.e., plastic deformation) generated at the crack tip during fatigue propagation. Moreover, a linear relationship between da/dN and ΔCTODp independent of the stress ratio was found. Results show that the CTOD can be used as a viable alternative to the stress intensity factor range (ΔK) in characterising fatigue crack propagation since the parameter considers the fatigue threshold and crack shielding in an intrinsic way

    An improved prediction of the effective range of stress intensity factor in fatigue crack growth

    Get PDF
    This paper will summarise the results obtained to date and which demonstrate that the mesoscale CJP model of crack tip fields is capable of providing an improved correlation of fatigue crack growth rates across a range of stress ratios and specimen geometries, compared with the standard stress intensity factor calculations

    Weld residual stresses near the bimetallic interface in clad RPV steel: A comparison between deep-hole drilling and neutron diffraction data

    Get PDF
    The inner surface of ferritic steel reactor pressure vessels (RPV) is clad with strip welded austenitic stainless steel primarily to increase the long-term corrosion resistance of the ferritic vessel. The strip welding process used in the cladding operation induces significant residual stresses in the clad layer and in the RPV steel substrate, arising both from the thermal cycle and from the very different thermal and mechanical properties of the austenitic clad layer and the ferritic RPV steel. This work measures residual stresses using the deep hole drilling (DHD) and neutron diffraction (ND) techniques and compares residual stress data obtained by the two methods in a stainless clad coupon of A533B Class 2 steel. The results give confidence that both techniques are capable of assessing the trends in residual stresses, and their magnitudes. Significant differences are that the ND data shows greater values of the tensile stress peaks (∼100 MPa) than the DHD data but has a higher systematic error associated with it. The stress peaks are sharper with the ND technique and also differ in spatial position by around 1 mm compared with the DHD technique. © 2014 Elsevier B.V

    Breakfast omission reduces subsequent resistance exercise performance

    Get PDF
    Although much research has examined the influence of morning carbohydrate intake (i.e., breakfast) on endurance performance, little is known about its effects on performance in resistance-type exercise. Sixteen resistance-trained men (age 23 ± 4 years, body mass 77.56 ± 7.13 kg, and height 1.75 ± 0.04 m) who regularly (≥3 day/wk) consumed breakfast completed this study. After assessment of 10 repetition maximum (10RM) and familiarization process, subjects completed 2 randomized trials. After an overnight fast, subjects consumed either a typical breakfast meal (containing 1.5 g of carbohydrate/kg; breakfast consumption [BC]) or a water-only breakfast (breakfast omission [BO]). Two hours later, subjects performed 4 sets to failure of back squat and bench press at 90% of their 10RM. Sensations of hunger, fullness, desire to eat, and prospective food consumption were collected before, as well as immediately, 1 hour and 2 hours after BC/BO using 100-mm visual analogue scales. Total repetitions completed were lower during BO for both back squat (BO: 58 ± 11 repetitions; BC: 68 ± 14 repetitions; effect size [ES] = 0.98; p < 0.001) and bench press (BO: 38 ± 5 repetitions; BC: 40 ± 5 repetitions; ES = 1.06; p < 0.001). Fullness was greater, whereas hunger, desire to eat, and prospective food consumption were lower after a meal for BC compared with BO (p < 0.001). The results of this study demonstrate that omission of a pre-exercise breakfast might impair resistance exercise performance in habitual breakfast consumers. Therefore, consumption of a high-carbohydrate meal before resistance exercise might be a prudent strategy to help maximize performanc

    Resin-rich volumes ( RRV ) and the performance of fibre-reinforced composites: a review

    Get PDF
    This review considers the influence of Resin-Rich Volumes (RRV) on the static and dynamic mechanical and physical behaviour of fibre-reinforced composites. The formation, shape and size, and measurement of RRV in composites consequent upon different fabric architectures and manufacturing processes is discussed. The majority of studies show a negative effect of the RRV on the mechanical behaviour of composite materials. The main factors that cause the RRV are (a) the clustering of fibres as bundles in textiles, (b) the stacking sequence, (c) the consolidation characteristics of the reinforcement, (d) the resin flow characteristics as a function of tempera-ture, and (e) the composite manufacturing process and cure cycle. RRV are stress concentrations that lead to a disproportionate fall in composite strength. Anyone considering moving from autoclave consolidation to out-of-autoclave (OOA) processes should be cautious of the potential effects of the change

    The structure of a tetrameric α-carbonic anhydrase from Thermovibrio ammonificans reveals a core formed around intermolecular disulfides that contribute to its thermostability

    Get PDF
    Carbonic anhydrase enzymes catalyse the reversible hydration of carbon dioxide to bicarbonate. A thermophilic Thermovibrio ammonificans α-carbonic anhydrase (TaCA) has been expressed in Escherichia coli and structurally and biochemically characterized. The crystal structure of TaCA has been determined in its native form and in two complexes with bound inhibitors. The tetrameric enzyme is stabilized by a unique core in the centre of the molecule formed by two intersubunit disulfides and a single lysine residue from each monomer that is involved in intersubunit ionic interactions. The structure of this core protects the intersubunit disulfides from reduction, whereas the conserved intrasubunit disulfides are not formed in the reducing environment of the E. coli host cytosol. When oxidized to mimic the environment of the periplasmic space, TaCA has increased thermostability, retaining 90% activity after incubation at 70°C for 1 h, making it a good candidate for industrial carbon-dioxide capture. The reduction of all TaCA cysteines resulted in dissociation of the tetrameric molecule into monomers with lower activity and reduced thermostability. Unlike other characterized α-carbonic anhydrases, TaCA does not display esterase activity towards p-nitrophenyl acetate, which appears to result from the increased rigidity of its protein scaffold.Statoil ASAUniversity of ExeterBotechnology and Biological Sciences Research Council (BBSRC)Wellcome TrustEUEngineering and Physical Sciences Research Council (EPSRC
    • …
    corecore