5,385 research outputs found

    The archaeological contribution of forensic craniofacial reconstruction to a portrait drawing of a Korean historical figure

    Get PDF
    Craniofacial reconstruction (CFR) is a technique used to rebuild the living facial appearance onto a skull in order to recognise or identify an individual. This technique is primarily employed in forensic investigation, but also utilised in archaeological research to recreate the faces of paleontological and archaeological humans. In this study, the face of a 17th century historical figure from Korea was reconstructed utilising computerized tomography from the mummified remains. A geographic surface comparison programme was employed to evaluate the accuracy of the CFR produced using a three-dimensional computerized modelling system. Analysis of the facial tissue depth discrepancies demonstrated that the CFR may have acceptable resemblance to the living face of the historical individual. Using computerised graphic technology, the CFR outcome, along with the archaeological information about the hair style, ornaments, and dress discovered in the tomb, a portrait-styled in the typical drawing trend from the era was created. The research suggests that current CFR techniques can provide an accurate portrait drawing of historical figures in Korea

    Ablation of kynurenine 3-monooxygenase rescues plasma inflammatory cytokine levels in the R6/2 mouse model of Huntington's disease

    Get PDF
    Kynurenine 3-monooxygenase (KMO) regulates the levels of neuroactive metabolites in the kynurenine pathway (KP), dysregulation of which is associated with Huntington’s disease (HD) pathogenesis. KMO inhibition leads to increased levels of neuroprotective relative to neurotoxic metabolites, and has been found to ameliorate disease-relevant phenotypes in several HD models. Here, we crossed KMO knockout mice to R6/2 HD mice to examine the effect of KMO depletion in the brain and periphery. KP genes were dysregulated in peripheral tissues from R6/2 mice and KMO ablation normalised levels of a subset of these. KP metabolites were also assessed, and KMO depletion led to increased levels of neuroprotective kynurenic acid in brain and periphery, and dramatically reduced neurotoxic 3-hydroxykunurenine levels in striatum and cortex. Notably, the increased levels of pro-inflammatory cytokines TNFa, IL1β, IL4 and IL6 found in R6/2 plasma were normalised upon KMO deletion. Despite these improvements in KP dysregulation and peripheral inflammation, KMO ablation had no effect upon several behavioural phenotypes. Therefore, although genetic inhibition of KMO in R6/2 mice modulates several metabolic and inflammatory parameters, these do not translate to improvements in primary disease indicators—observations which will likely be relevant for other interventions targeted at peripheral inflammation in HD

    De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>American ginseng (<it>Panax quinquefolius </it>L.) is one of the most widely used herbal remedies in the world. Its major bioactive constituents are the triterpene saponins known as ginsenosides. However, little is known about ginsenoside biosynthesis in American ginseng, especially the late steps of the pathway.</p> <p>Results</p> <p>In this study, a one-quarter 454 sequencing run produced 209,747 high-quality reads with an average sequence length of 427 bases. <it>De novo </it>assembly generated 31,088 unique sequences containing 16,592 contigs and 14,496 singletons. About 93.1% of the high-quality reads were assembled into contigs with an average 8-fold coverage. A total of 21,684 (69.8%) unique sequences were annotated by a BLAST similarity search against four public sequence databases, and 4,097 of the unique sequences were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes. Based on the bioinformatic analysis described above, we found all of the known enzymes involved in ginsenoside backbone synthesis, starting from acetyl-CoA via the isoprenoid pathway. Additionally, a total of 150 cytochrome P450 (CYP450) and 235 glycosyltransferase unique sequences were found in the 454 cDNA library, some of which encode enzymes responsible for the conversion of the ginsenoside backbone into the various ginsenosides. Finally, one CYP450 and four UDP-glycosyltransferases were selected as the candidates most likely to be involved in ginsenoside biosynthesis through a methyl jasmonate (MeJA) inducibility experiment and tissue-specific expression pattern analysis based on a real-time PCR assay.</p> <p>Conclusions</p> <p>We demonstrated, with the assistance of the MeJA inducibility experiment and tissue-specific expression pattern analysis, that transcriptome analysis based on 454 pyrosequencing is a powerful tool for determining the genes encoding enzymes responsible for the biosynthesis of secondary metabolites in non-model plants. Additionally, the expressed sequence tags (ESTs) and unique sequences from this study provide an important resource for the scientific community that is interested in the molecular genetics and functional genomics of American ginseng.</p

    Improvement in photovoltaic performance of rutile-phased TiO2 nanorod/nanoflower-based dye-sensitized solar cell

    Get PDF
    An improved dye-sensitized solar cell (DSC) of rutile-phased titanium dioxide (TiO2) electrode with increased power conversion efficiency was successfully fabricated. Rutile-phased TiO2 nanorods and nanoflowers were grown directly on fluorine-doped SnO2 (FTO) by simple aqueous chemical growth technique using one-step hydrothermal process. The solution was prepared by mixing hydrochloric acid, deionized water, and titanium butoxide used as precursor. In the preparation of DSC, both TiO2 nanorods and nanoflowers, platinum (Pt), ruthenium dye N719, and DPMII electrolyte were used as photoelectrode, counter electrode, dye solution, and liquid electrolyte, respectively. The prepared rutile-phased TiO2 nanorods and nanoflowers samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The DSCs were fabricated based on the rutile-phased titanium dioxide nanorod and nanoflower photoelectrodes. For their energy conversion efficiency, I-V characteristics and electrochemical impedance spectroscopy were studied. We also investigated the effect of cetyltrimethylammonium bromide (CTAB) reaction times 2, 5, and 10 h in the preparation of rutile-phased TiO2 nanoflowers for DSC. CTAB is one of the capping agents that cover the refine surface of nanoparticles and prevent them from coagulation or aggregation. In our final result, the combination of rutile-phased TiO2 nanorod- and nanoflower-based DSCs showed best efficiency at approximately 3.11% due to its good electron transport of TiO2 nanorods and increased surface area by the TiO2 nanoflowers that had increased dye absorption

    Estimated Time of Biomineralization in Developing Rat Incisors

    Get PDF
    published_or_final_versio

    Ectopic A-lattice seams destabilize microtubules

    Get PDF
    Natural microtubules typically include one A-lattice seam within an otherwise helically symmetric B-lattice tube. It is currently unclear how A-lattice seams influence microtubule dynamic instability. Here we find that including extra A-lattice seams in GMPCPP microtubules, structural analogues of the GTP caps of dynamic microtubules, destabilizes them, enhancing their median shrinkage rate by >20-fold. Dynamic microtubules nucleated by seeds containing extra A-lattice seams have growth rates similar to microtubules nucleated by B-lattice seeds, yet have increased catastrophe frequencies at both ends. Furthermore, binding B-lattice GDP microtubules to a rigor kinesin surface stabilizes them against shrinkage, whereas microtubules with extra A-lattice seams are stabilized only slightly. Our data suggest that introducing extra A-lattice seams into dynamic microtubules destabilizes them by destabilizing their GTP caps. On this basis, we propose that the single A-lattice seam of natural B-lattice MTs may act as a trigger point, and potentially a regulation point, for catastrophe

    Evaluation of cost-effective strategies for rabies post-exposure vaccination in low-income countries

    Get PDF
    &lt;b&gt;Background:&lt;/b&gt; Prompt post-exposure prophylaxis (PEP) is essential in preventing the fatal onset of disease in persons exposed to rabies. Unfortunately, life-saving rabies vaccines and biologicals are often neither accessible nor affordable, particularly to the poorest sectors of society who are most at risk and upon whom the largest burden of rabies falls. Increasing accessibility, reducing costs and preventing delays in delivery of PEP should therefore be prioritized.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Methodology/Principal Findings:&lt;/b&gt; We analyzed different PEP vaccination regimens and evaluated their relative costs and benefits to bite victims and healthcare providers. We found PEP vaccination to be an extremely cost-effective intervention (from 200tolessthan200 to less than 60/death averted). Switching from intramuscular (IM) administration of PEP to equally efficacious intradermal (ID) regimens was shown to result in significant savings in the volume of vaccine required to treat the same number of patients, which could mitigate vaccine shortages, and would dramatically reduce the costs of implementing PEP. We present financing mechanisms that would make PEP more affordable and accessible, could help subsidize the cost for those most in need, and could even support new and existing rabies control and prevention programs.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusions/Significance:&lt;/b&gt; We conclude that a universal switch to ID delivery would improve the affordability and accessibility of PEP for bite victims, leading to a likely reduction in human rabies deaths, as well as being economical for healthcare providers.&lt;p&gt;&lt;/p&gt

    Bridging Time Scales in Cellular Decision Making with a Stochastic Bistable Switch

    Get PDF
    Cellular transformations which involve a significant phenotypical change of the cell's state use bistable biochemical switches as underlying decision systems. In this work, we aim at linking cellular decisions taking place on a time scale of years to decades with the biochemical dynamics in signal transduction and gene regulation, occuring on a time scale of minutes to hours. We show that a stochastic bistable switch forms a viable biochemical mechanism to implement decision processes on long time scales. As a case study, the mechanism is applied to model the initiation of follicle growth in mammalian ovaries, where the physiological time scale of follicle pool depletion is on the order of the organism's lifespan. We construct a simple mathematical model for this process based on experimental evidence for the involved genetic mechanisms. Despite the underlying stochasticity, the proposed mechanism turns out to yield reliable behavior in large populations of cells subject to the considered decision process. Our model explains how the physiological time constant may emerge from the intrinsic stochasticity of the underlying gene regulatory network. Apart from ovarian follicles, the proposed mechanism may also be of relevance for other physiological systems where cells take binary decisions over a long time scale.Comment: 14 pages, 4 figure
    corecore