165 research outputs found

    An evaluation of the heat test for the ice-nucleating ability of minerals and biological material

    Get PDF
    Ice-nucleating particles (INPs) are atmospheric aerosol particles that can strongly influence the radiative properties and precipitation onset in mixed-phase clouds by triggering ice formation in supercooled cloud water droplets. The ability to distinguish between INPs of mineral and biological origin in samples collected from the environment is needed to better understand their distribution and sources. A common method for assessing the relative contributions of mineral and biogenic INPs in samples collected from the environment (e.g. aerosol, rainwater, soil) is to determine the ice-nucleating ability (INA) before and after heating, where heat is expected to denature proteins associated with some biological ice nucleants. The key assumption is that the ice nucleation sites of biological origin are denatured by heat, while those associated with mineral surfaces remain unaffected; we test this assumption here. We exposed atmospherically relevant mineral samples to wet heat (INP suspensions warmed to above 90 ∘C) or dry heat (dry samples heated up to 250 ∘C) and assessed the effects on their immersion mode INA using a droplet freezing assay. K-feldspar, thought to be the dominant mineral-based atmospheric INP type where present, was not significantly affected by wet heating, while quartz, plagioclase feldspars and Arizona Test Dust (ATD) lost INA when heated in this mode. We argue that these reductions in INA in the aqueous phase result from direct alteration of the mineral particle surfaces by heat treatment rather than from biological or organic contamination. We hypothesise that degradation of active sites by dissolution of mineral surfaces is the mechanism in all cases due to the correlation between mineral INA deactivation magnitudes and their dissolution rates. Dry heating produced minor but repeatable deactivations in K-feldspar particles but was generally less likely to deactivate minerals compared to wet heating. We also heat-tested biogenic INP proxy materials and found that cellulose and pollen washings were relatively resistant to wet heat. In contrast, bacterially and fungally derived ice-nucleating samples were highly sensitive to wet heat as expected, although their activity remained non-negligible after wet heating. Dry heating at 250 ∘C leads to deactivation of all biogenic INPs. However, the use of dry heat at 250 ∘C for the detection of biological INPs is limited since K-feldspar's activity is also reduced under these conditions. Future work should focus on finding a set of dry heat conditions where all biological material is deactivated, but key mineral types are not. We conclude that, while wet INP heat tests at (>90 ∘C) have the potential to produce false positives, i.e. deactivation of a mineral INA that could be misconstrued as the presence of biogenic INPs, they are still a valid method for qualitatively detecting very heat-sensitive biogenic INPs in ambient samples if the mineral-based INA is controlled by K-feldspar

    Variational Methods for Biomolecular Modeling

    Full text link
    Structure, function and dynamics of many biomolecular systems can be characterized by the energetic variational principle and the corresponding systems of partial differential equations (PDEs). This principle allows us to focus on the identification of essential energetic components, the optimal parametrization of energies, and the efficient computational implementation of energy variation or minimization. Given the fact that complex biomolecular systems are structurally non-uniform and their interactions occur through contact interfaces, their free energies are associated with various interfaces as well, such as solute-solvent interface, molecular binding interface, lipid domain interface, and membrane surfaces. This fact motivates the inclusion of interface geometry, particular its curvatures, to the parametrization of free energies. Applications of such interface geometry based energetic variational principles are illustrated through three concrete topics: the multiscale modeling of biomolecular electrostatics and solvation that includes the curvature energy of the molecular surface, the formation of microdomains on lipid membrane due to the geometric and molecular mechanics at the lipid interface, and the mean curvature driven protein localization on membrane surfaces. By further implicitly representing the interface using a phase field function over the entire domain, one can simulate the dynamics of the interface and the corresponding energy variation by evolving the phase field function, achieving significant reduction of the number of degrees of freedom and computational complexity. Strategies for improving the efficiency of computational implementations and for extending applications to coarse-graining or multiscale molecular simulations are outlined.Comment: 36 page

    Exploiting protein flexibility to predict the location of allosteric sites

    Get PDF
    Background: Allostery is one of the most powerful and common ways of regulation of protein activity. However, for most allosteric proteins identified to date the mechanistic details of allosteric modulation are not yet well understood. Uncovering common mechanistic patterns underlying allostery would allow not only a better academic understanding of the phenomena, but it would also streamline the design of novel therapeutic solutions. This relatively unexplored therapeutic potential and the putative advantages of allosteric drugs over classical active-site inhibitors fuel the attention allosteric-drug research is receiving at present. A first step to harness the regulatory potential and versatility of allosteric sites, in the context of drug-discovery and design, would be to detect or predict their presence and location. In this article, we describe a simple computational approach, based on the effect allosteric ligands exert on protein flexibility upon binding, to predict the existence and position of allosteric sites on a given protein structure. Results: By querying the literature and a recently available database of allosteric sites, we gathered 213 allosteric proteins with structural information that we further filtered into a non-redundant set of 91 proteins. We performed normal-mode analysis and observed significant changes in protein flexibility upon allosteric-ligand binding in 70% of the cases. These results agree with the current view that allosteric mechanisms are in many cases governed by changes in protein dynamics caused by ligand binding. Furthermore, we implemented an approach that achieves 65% positive predictive value in identifying allosteric sites within the set of predicted cavities of a protein (stricter parameters set, 0.22 sensitivity), by combining the current analysis on dynamics with previous results on structural conservation of allosteric sites. We also analyzed four biological examples in detail, revealing that this simple coarse-grained methodology is able to capture the effects triggered by allosteric ligands already described in the literature. Conclusions: We introduce a simple computational approach to predict the presence and position of allosteric sites in a protein based on the analysis of changes in protein normal modes upon the binding of a coarse-grained ligand at predicted cavities. Its performance has been demonstrated using a newly curated non-redundant set of 91 proteins with reported allosteric properties. The software developed in this work is available upon request from the authors

    Computation of Conformational Coupling in Allosteric Proteins

    Get PDF
    In allosteric regulation, an effector molecule binding a protein at one site induces conformational changes, which alter structure and function at a distant active site. Two key challenges in the computational modeling of allostery are the prediction of the structure of one allosteric state starting from the structure of the other, and elucidating the mechanisms underlying the conformational coupling of the effector and active sites. Here we approach these two challenges using the Rosetta high-resolution structure prediction methodology. We find that the method can recapitulate the relaxation of effector-bound forms of single domain allosteric proteins into the corresponding ligand-free states, particularly when sampling is focused on regions known to change conformation most significantly. Analysis of the coupling between contacting pairs of residues in large ensembles of conformations spread throughout the landscape between and around the two allosteric states suggests that the transitions are built up from blocks of tightly coupled interacting sets of residues that are more loosely coupled to one another

    Structure-Based Predictive Models for Allosteric Hot Spots

    Get PDF
    In allostery, a binding event at one site in a protein modulates the behavior of a distant site. Identifying residues that relay the signal between sites remains a challenge. We have developed predictive models using support-vector machines, a widely used machine-learning method. The training data set consisted of residues classified as either hotspots or non-hotspots based on experimental characterization of point mutations from a diverse set of allosteric proteins. Each residue had an associated set of calculated features. Two sets of features were used, one consisting of dynamical, structural, network, and informatic measures, and another of structural measures defined by Daily and Gray [1]. The resulting models performed well on an independent data set consisting of hotspots and non-hotspots from five allosteric proteins. For the independent data set, our top 10 models using Feature Set 1 recalled 68–81% of known hotspots, and among total hotspot predictions, 58–67% were actual hotspots. Hence, these models have precision P = 58–67% and recall R = 68–81%. The corresponding models for Feature Set 2 had P = 55–59% and R = 81–92%. We combined the features from each set that produced models with optimal predictive performance. The top 10 models using this hybrid feature set had R = 73–81% and P = 64–71%, the best overall performance of any of the sets of models. Our methods identified hotspots in structural regions of known allosteric significance. Moreover, our predicted hotspots form a network of contiguous residues in the interior of the structures, in agreement with previous work. In conclusion, we have developed models that discriminate between known allosteric hotspots and non-hotspots with high accuracy and sensitivity. Moreover, the pattern of predicted hotspots corresponds to known functional motifs implicated in allostery, and is consistent with previous work describing sparse networks of allosterically important residues

    Standard of Practice for the Endovascular Treatment of Thoracic Aortic Aneurysms and Type B Dissections

    Get PDF
    Thoracic endovascular aortic repair (TEVAR) represents a minimally invasive technique alternative to conventional open surgical reconstruction for the treatment of thoracic aortic pathologies. Rapid advances in endovascular technology and procedural breakthroughs have contributed to a dramatic transformation of the entire field of thoracic aortic surgery. TEVAR procedures can be challenging and, at times, extraordinarily difficult. They require seasoned endovascular experience and refined skills. Of all endovascular procedures, meticulous assessment of anatomy and preoperative procedure planning are absolutely paramount to produce optimal outcomes. These guidelines are intended for use in quality-improvement programs that assess the standard of care expected from all physicians who perform TEVAR procedures

    Factors affecting the survival of patients with oesophageal carcinoma under radiotherapy in the north of Iran

    Get PDF
    Factors relevant to the survival of patients with oesophageal cancer under radiotherapy have been studied in northern Iran where its incidence is high. We conducted an analytical study using a historical cohort and information from the medical charts of patients with oesophageal cancer. Out of 523 patients referred to the Shahid Rajaii radiotherapy centre in Babolsar from 1992 to 1996, we followed 230 patients for whom an address was available in 1998. The frequency of prognostic factors among those not contacted was very similar to those included in the study. The data were analysed using survival analysis by the nonparametric method of Kaplan Meier and the Cox regression model to determine risk ratios (RR) of prognostic factors. Survival rates were 42% at 1 year, 21% at 2 years, and 8% at 5 years after diagnosis. Patients aged 50–64 were found to have poorer survival compared with those less than 50 (RR = 1.73, P = 0.03); the risk ratio for ages f = 65 was 1.88 (P = 0.03). Females had significantly better survival than males (RR = 0.71, P = 0.02). For each 100 rads dose of radiotherapy, the risk ratio was significantly decreased by 1% (RR = 0.99, P = 0.05); for each session of radiotherapy, the risk ratio was significantly decreased by 4% (RR = 0.96, P = 0.0001); for each square centimetre size of surface under radiotherapy, the risk ratio significantly increased (RR = 1.002, P = 0.04). We did not observe a significant difference on survival by histology, anatomical location of tumours, or type of treatment (P > 0.05). Prognosis is extremely poor. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Factors associated with health-seeking behavior among migrant workers in Beijing, China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Migrant workers are a unique phenomenon in the process of China's economic transformation. The household registration system classifies them as temporary residents in cities, putting them in a vulnerable state with an unfair share of urban infrastructure and social public welfare. The amount of pressure inflicted by migrant workers in Beijing, as one of the major migration destinations, is currently at a threshold. This study was designed to assess the factors associated with health-seeking behavior and to explore feasible solutions to the obstacles migrant workers in China faced with when accessing health-care.</p> <p>Methods</p> <p>A sample of 2,478 migrant workers in Beijing was chosen by the multi-stage stratified cluster sampling method. A structured questionnaire survey was conducted via face-to-face interviews between investigators and subjects. The multilevel methodology (MLM) was used to demonstrate the independent effects of the explanatory variables on health seeking behavior in migrant workers.</p> <p>Results</p> <p>The medical visitation rate of migrant workers within the past two weeks was 4.8%, which only accounted for 36.4% of those who were ill. Nearly one-third of the migrant workers chose self-medication (33.3%) or no measures (30.3%) while ill within the past two weeks. 19.7% of the sick migrants who should have been hospitalized failed to receive medical treatment within the past year. According to self-reported reasons, the high cost of health service was a significant obstacle to health-care access for 40.5% of the migrant workers who became sick. However, 94.0% of the migrant workers didn't have any insurance coverage in Beijing. The multilevel model analysis indicates that health-seeking behavior among migrants is significantly associated with their insurance coverage. Meanwhile, such factors as household monthly income per capita and working hours per day also affect the medical visitation rate of the migrant workers in Beijing.</p> <p>Conclusion</p> <p>This study assesses the influence of socio-demographic characteristics on the migrant workers' decision to seek health care services when they fall ill, and it also indicates that the current health service system discourages migrant workers from seeking appropriate care of good quality. Relevant policies of public medical insurance and assistance program should be vigorously implemented for providing affordable health care services to the migrants. Feasible measures need to be taken to reduce the health risks associated with current hygiene practices and equity should be assured in access to health care services among migrant workers.</p

    Benchmarking and Analysis of Protein Docking Performance in Rosetta v3.2

    Get PDF
    RosettaDock has been increasingly used in protein docking and design strategies in order to predict the structure of protein-protein interfaces. Here we test capabilities of RosettaDock 3.2, part of the newly developed Rosetta v3.2 modeling suite, against Docking Benchmark 3.0, and compare it with RosettaDock v2.3, the latest version of the previous Rosetta software package. The benchmark contains a diverse set of 116 docking targets including 22 antibody-antigen complexes, 33 enzyme-inhibitor complexes, and 60 ‘other’ complexes. These targets were further classified by expected docking difficulty into 84 rigid-body targets, 17 medium targets, and 14 difficult targets. We carried out local docking perturbations for each target, using the unbound structures when available, in both RosettaDock v2.3 and v3.2. Overall the performances of RosettaDock v2.3 and v3.2 were similar. RosettaDock v3.2 achieved 56 docking funnels, compared to 49 in v2.3. A breakdown of docking performance by protein complex type shows that RosettaDock v3.2 achieved docking funnels for 63% of antibody-antigen targets, 62% of enzyme-inhibitor targets, and 35% of ‘other’ targets. In terms of docking difficulty, RosettaDock v3.2 achieved funnels for 58% of rigid-body targets, 30% of medium targets, and 14% of difficult targets. For targets that failed, we carry out additional analyses to identify the cause of failure, which showed that binding-induced backbone conformation changes account for a majority of failures. We also present a bootstrap statistical analysis that quantifies the reliability of the stochastic docking results. Finally, we demonstrate the additional functionality available in RosettaDock v3.2 by incorporating small-molecules and non-protein co-factors in docking of a smaller target set. This study marks the most extensive benchmarking of the RosettaDock module to date and establishes a baseline for future research in protein interface modeling and structure prediction

    Exploring the Conformational Transitions of Biomolecular Systems Using a Simple Two-State Anisotropic Network Model

    Get PDF
    Biomolecular conformational transitions are essential to biological functions. Most experimental methods report on the long-lived functional states of biomolecules, but information about the transition pathways between these stable states is generally scarce. Such transitions involve short-lived conformational states that are difficult to detect experimentally. For this reason, computational methods are needed to produce plausible hypothetical transition pathways that can then be probed experimentally. Here we propose a simple and computationally efficient method, called ANMPathway, for constructing a physically reasonable pathway between two endpoints of a conformational transition. We adopt a coarse-grained representation of the protein and construct a two-state potential by combining two elastic network models (ENMs) representative of the experimental structures resolved for the endpoints. The two-state potential has a cusp hypersurface in the configuration space where the energies from both the ENMs are equal. We first search for the minimum energy structure on the cusp hypersurface and then treat it as the transition state. The continuous pathway is subsequently constructed by following the steepest descent energy minimization trajectories starting from the transition state on each side of the cusp hypersurface. Application to several systems of broad biological interest such as adenylate kinase, ATP-driven calcium pump SERCA, leucine transporter and glutamate transporter shows that ANMPathway yields results in good agreement with those from other similar methods and with data obtained from all-atom molecular dynamics simulations, in support of the utility of this simple and efficient approach. Notably the method provides experimentally testable predictions, including the formation of non-native contacts during the transition which we were able to detect in two of the systems we studied. An open-access web server has been created to deliver ANMPathway results. © 2014 Das et al
    corecore