883 research outputs found

    ZHX2 Enhances the Cytotoxicity of Chemotherapeutic Drugs in Liver Tumor Cells by Repressing MDR1 via Interfering with NF-YA

    Get PDF
    We previously reported the tumor suppressor function of Zinc-fingers and homeoboxes 2 (ZHX2) in hepatocellular carcinoma (HCC). Other studies indicate the association of increased ZHX2 expression with improved response to high dose chemotherapy in multiple myeloma. Here, we aim to test whether increased ZHX2 levels in HCC cells repress multidrug resistance 1(MDR1) expression resulting in increased sensitivity to chemotherapeutic drugs. We showed evidence that increased ZHX2 levels correlated with reduced MDR1 expression and enhanced the cytotoxicity of CDDP and ADM in different HCC cell lines. Consistently, elevated ZHX2 significantly reduced ADM efflux in HepG2 cells and greatly increased the CDDP-mediated suppression of liver tumor growth in vivo. Furthermore, immunohistochemical staining demonstrated the inverse correlation of ZHX2 and MDR1 expression in HCC tissues. Luciferase report assay showed that ZHX2 repressed the MDR1 promoter activity, while knockdown of NF-YA or mutating the NF-Y binding site eliminated this ZHX2-mediated repression of MDR1 transcription. Co-IP and ChIP assay further suggested that ZHX2 interacted with NF-YA and reduced NF-Y binding to the MDR1 promoter. Taken together, we clarify that ZHX2 represses NF-Y-mediated activation of MDR1 transcription and, in doing so, enhances the effects of chemotherapeutics in HCC cells both in vitro and in vivo

    Secondary Breast Augmentation: Managing Each Case

    Get PDF
    Breast augmentation is one of the most regularly performed interventions requiring reoperation in aesthetic surgery. For this reason, it involves a greater chance for complications. In this report, the authors aim to provide young plastic surgeons with guidelines based on their experience for responding to each of these complications, to explain the causes and ways of avoiding them, and to show how they can be treated when they occur

    Pharmacological depletion of RNA splicing factor RBM39 by indisulam synergizes with PARP inhibitors in high-grade serous ovarian carcinoma

    Get PDF
    Ovarian high-grade serous carcinoma (HGSC) is the most common subtype of ovarian cancer with limited therapeutic options and a poor prognosis. In recent years, poly-ADP ribose polymerase (PARP) inhibitors have demonstrated significant clinical benefits, especially in patients with BRCA1/2 mutations. However, acquired drug resistance and relapse is a major challenge. Indisulam (E7070) has been identified as a molecular glue that brings together splicing factor RBM39 and DCAF15 E3 ubiquitin ligase resulting in polyubiquitination, degradation, and subsequent RNA splicing defects. In this work, we demonstrate that the loss of RBM39 induces splicing defects in key DNA damage repair genes in ovarian cancer, leading to increased sensitivity to cisplatin and various PARP inhibitors. The addition of indisulam also improved olaparib response in mice bearing PARP inhibitor-resistant tumors. These findings demonstrate that combining RBM39 degraders and PARP inhibitors is a promising therapeutic approach to improve PARP inhibitor response in ovarian HGSC

    Arduino based solar tracking system

    Get PDF
    This thesis proposes the dual axis solar tracker for optimum solar cell implementation using dc-dc boost converter controlled by fuzzy logic controller with the maximum power point tracking (MPPT) method. The objectives of this project are to track and optimize the maximum output power of the solar panel by designing and implementing the fuzzy logic controller using microcontroller as well as to regulate the output voltage of the solar panel using dc-dc boost converter. The system includes a solar panel, DC-DC boost converter, the fuzzy logic controller implemented on Arduino Uno for controlling on/off time of MOSFET of the boost converter, voltage divider and optocoupler circuit as a driver for MOSFET. Tracking and detecting the angle of the sun to locate the surface plate of solar cell at the position and the angle where it can get maximum amount of energy. The solar panel must have sensors that can detect the position of the sun and dc motors act as free moving neck to make it easier to move freely depending on the angle detected. The light dependent resistor (LDR) will be used as sun tracking. The photocell panel will detect the existing of sun and the surface plate of photocell panel will move horizontal and vertical axis depending on the value of LDR detected to follow the angular degree of sun in order to get maximum and best result of absorbing energy. Moreover, this project presents a fuzzy logic real time code in Arduino language for ATmega328 microcontroller at Arduino Uno board. The result obtained from the Arduino coding is the variation of duty cycle of PWM signal according to the voltage of solar panel. The final result obtained from dc-dc boost converter showed that the output voltage has been regulated. Overall, the designed system increases the efficiency of the solar panel based on experimental results

    Anticancer Gene Transfer for Cancer Gene Therapy

    Get PDF
    Gene therapy vectors are among the treatments currently used to treat malignant tumors. Gene therapy vectors use a specific therapeutic transgene that causes death in cancer cells. In early attempts at gene therapy, therapeutic transgenes were driven by non-specific vectors which induced toxicity to normal cells in addition to the cancer cells. Recently, novel cancer specific viral vectors have been developed that target cancer cells leaving normal cells unharmed. Here we review such cancer specific gene therapy systems currently used in the treatment of cancer and discuss the major challenges and future directions in this field

    Genome-wide association study identifies loci associated with liability to alcohol and drug dependence that is associated with variability in reward-related ventral striatum activity in African- and European-Americans.

    Get PDF
    Genetic influences on alcohol and drug dependence partially overlap, however, specific loci underlying this overlap remain unclear. We conducted a genome-wide association study (GWAS) of a phenotype representing alcohol or illicit drug dependence (ANYDEP) among 7291 European-Americans (EA; 2927 cases) and 3132 African-Americans (AA: 1315 cases) participating in the family-based Collaborative Study on the Genetics of Alcoholism. ANYDEP was heritable (h 2 in EA = 0.60, AA = 0.37). The AA GWAS identified three regions with genome-wide significant (GWS; P < 5E-08) single nucleotide polymorphisms (SNPs) on chromosomes 3 (rs34066662, rs58801820) and 13 (rs75168521, rs78886294), and an insertion-deletion on chromosome 5 (chr5:141988181). No polymorphisms reached GWS in the EA. One GWS region (chromosome 1: rs1890881) emerged from a trans-ancestral meta-analysis (EA + AA) of ANYDEP, and was attributable to alcohol dependence in both samples. Four genes (AA: CRKL, DZIP3, SBK3; EA: P2RX6) and four sets of genes were significantly enriched within biological pathways for hemostasis and signal transduction. GWS signals did not replicate in two independent samples but there was weak evidence for association between rs1890881 and alcohol intake in the UK Biobank. Among 118 AA and 481 EA individuals from the Duke Neurogenetics Study, rs75168521 and rs1890881 genotypes were associated with variability in reward-related ventral striatum activation. This study identified novel loci for substance dependence and provides preliminary evidence that these variants are also associated with individual differences in neural reward reactivity. Gene discovery efforts in non-European samples with distinct patterns of substance use may lead to the identification of novel ancestry-specific genetic markers of risk

    Current and Historical Drivers of Landscape Genetic Structure Differ in Core and Peripheral Salamander Populations

    Get PDF
    With predicted decreases in genetic diversity and greater genetic differentiation at range peripheries relative to their cores, it can be difficult to distinguish between the roles of current disturbance versus historic processes in shaping contemporary genetic patterns. To address this problem, we test for differences in historic demography and landscape genetic structure of coastal giant salamanders (Dicamptodon tenebrosus) in two core regions (Washington State, United States) versus the species' northern peripheral region (British Columbia, Canada) where the species is listed as threatened. Coalescent-based demographic simulations were consistent with a pattern of post-glacial range expansion, with both ancestral and current estimates of effective population size being much larger within the core region relative to the periphery. However, contrary to predictions of recent human-induced population decline in the less genetically diverse peripheral region, there was no genetic signature of population size change. Effects of current demographic processes on genetic structure were evident using a resistance-based landscape genetics approach. Among core populations, genetic structure was best explained by length of the growing season and isolation by resistance (i.e. a ‘flat’ landscape), but at the periphery, topography (slope and elevation) had the greatest influence on genetic structure. Although reduced genetic variation at the range periphery of D. tenebrosus appears to be largely the result of biogeographical history rather than recent impacts, our analyses suggest that inherent landscape features act to alter dispersal pathways uniquely in different parts of the species' geographic range, with implications for habitat management

    Genomic markers to tailor treatments: waiting or initiating?

    Get PDF
    The decade since the publication of the Human Genome Project draft has ended with the discovery of hundreds of genomic markers related to diseases and phenotypes. However, the project has not yet delivered on its promise to tailor treatments for individuals. The number of genomic markers in clinical practice is very small. The number of markers to guide treatment decisions is even smaller. In order to speed up discovery and validation of genomic treatment selection markers, we call for considering the brilliant potential of randomized clinical trials. If biomedical research community can collaborate in organizing large-scale consortium of clinical trials associated with well-designed biobanks, these studies would soon act as huge laboratories for investigating genomic medicine; a big step forward towards personalizing medicine

    Sexual Size Dimorphism and Body Condition in the Australasian Gannet

    Get PDF
    Funding: The research was financially supported by the Holsworth Wildlife Research Endowment. Acknowledgments We thank the Victorian Marine Science Consortium, Sea All Dolphin Swim, Parks Victoria, and the Point Danger Management Committee for logistical support. We are grateful for the assistance of the many field volunteers involved in the study.Peer reviewedPublisher PD
    corecore